Основная функция почек: Функции почек человека кратко – Строение и функции почек — полное описание с фото

Функция почек у человека

Вконтакте

Facebook

Twitter

Одноклассники



Почки – важные органы, проблемы с функционированием которых, негативно отражаются на состоянии организма. При болезнях мочевыделительной системы ухудшается самочувствие, накапливаются токсины, вредные соли, появляется беспричинная слабость, снижается иммунитет.

Каковы функции почек в организме? Как защитить важные органы от негативного воздействия? Сколько жидкости нужно выпить за день для активного очищения от продуктов распада? Какие признаки указывают на развитие почечных патологий? Ответы в статье.

Строение почек

Основные сведения:

  • парные органы, форма – бобовидная;
  • при отказе почек требуется принудительное очищение крови при помощи аппарата гемодиализа, иначе все токсины останутся в организме, через время пациент погибнет;
  • органы находятся в поясничной области, левая – чуть выше: над правой расположена печень;
  • размеры – 10–12 см, правый орган чуть меньше;
  • с внешней стороны находится защитная оболочка, внутри организована система для накопления и выведения жидкости;
  • толщина паренхимы, ограниченной оболочкой и соединительной основой – 15–25 мм;
  • основная структурная единица – это нефрон, количество в здоровом организме – 1–1,3 млн. Внутри нефрона образуется моча. В зависимости от функциональности и строения различают три вида нефронов;
  • почечная ткань имеет гомогенную структуру, посторонние включения (песок, камни, опухоли) в норме отсутствуют;
  • почечная артерия доставляет кровь к почке, внутри органа сосуд разветвляется на артериолы, наполняющие кровью каждый клубочек. Постоянное давление поддерживает оптимальное соотношение артериол: уносящая в два раза уже, чем приносящая;
  • колебания АД в пределах от 100 до 150 мм рт. ст. не влияет на кровоток в почечной ткани. При сильном стрессе, патологических процессах, потере крови наблюдается снижение кровотока;
  • большие почечные чашечки образ

Функции почек

  • Экскреторная (то есть выделительная)

  • Осморегулирующая

  • Ионорегулирующая

  • Эндокринная (внутрисекреторная)

  • Метаболическая

  • Участие в кроветворении

Основная функция почек — выделительная — достигается процессами фильтрации и секреции. В почечном тельцеиз капиллярного клубочка под высоким давлением содержимое крови вместе с плазмой (кроме клеток крови и некоторых белков) процеживается в капсулу Шумлянского — Боумэна. Образовавшаяся жидкость —первичная мочапродолжает свой путь по извитымканальцамнефрона, в которых происходит обратное всасывание питательных веществ (таких как глюкоза, вода, электролиты и др.) в кровь, при этом в первичной моче остаются мочевина, мочевая кислота икреатин. В результате этого образуетсявторичная моча, которая из извитых канальцев идет в почечную лоханку, затем в мочеточник и мочевой пузырь. В норме за день через почки проходит 1700—2000 литров крови, образуется 120—150 литров первичной мочи и 1,5-2 литра вторичной мочи.

Скорость ультрафильтрации определяется несколькими факторами:

  • Разницей давлений в приносящей и отводящей артериоле почечного клубочка.

  • Разницей осмотическогодавления между кровью в капиллярной сети клубочка и просветом боуменовой капсулы.

  • Свойствами базальной мембраны почечного клубочка.

Вода и электролиты свободно проходят через базальную мембрану, тогда как вещества с более высокой молекулярной массой фильтруются избирательно. Определяющим фактором для фильтрации средне- и высокомолекулярных веществ является размер пор и заряд базальной мембраны клубочка.

Почки играют существенную роль в системе поддержания кислотно-щелочного равновесия плазмы крови. Почки также обеспечивают постоянство концентрацииосмотически активных веществвкровипри различном водном режиме для поддержания водно-солевого равновесия.

Через почки из организма выводятся конечные продукты азотистого обмена, чужеродные и токсические соединения (включая многие лекарства), избыток органических и неорганических веществ, они участвуют в обменеуглеводов и белков, в образовании биологически активных веществ (в частности — ренина, играющего ключевую роль в регуляции системного артериального давления и скорость секрецииальдостеронанадпочечниками,эритропоэтина— регулирующего скорость образованияэритроцитов).

Почки водных животных в значительной степени отличаются от почек наземных форм в связи с тем, что у водных стоит проблема выведения из организма воды, в то время как наземным необходимо удерживать воду в организме.

Мочеобразование осуществляется за счет трех последовательных процессов: 1) клубочковой фильтрации (ультрафильтрации) воды и низкомолекулярных компонентов из плазмы крови в капсулу почечного клубочка с образованием первичной мочи; 2) канальцевой реабсорбции — процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи в кровь; 3) канальцевой секреции — процесса переноса из крови в просвет канальцев ионов и органических веществ.

25.Кожа человека — это один из его органов, имеющий свое строение и физиологию. Кожа является самым большим органом нашего тела, ее масса примерно в три раза превосходит массу печени (самого крупного органа в организме), что составляет 5 % от общего веса тела.

СТРОЕНИЕ КОЖИ Строение кожи очень сложно. Кожа состоит из трех слоев: эпидермиса, собственно кожи, или дермы, и подкожной жировой клетчатки. Каждый из них, в свою очередь, состоит из нескольких слоев (см.схему).

Эпидермис имеет вид узкой полоски, на самом деле он состоит из пяти слоев. Эпидермис содержит эпителиальные клетки, имеющие разнообразную структуру и расположение. В самом нижнем его слое, зародышевом, или базальном, постоянно происходит размножение клеток. В нем же имеется пигмент меланин, от количества которого зависит и цвет кожи. Чем больше вырабатывается меланина, тем интенсивнее и темнее окраска кожи. У людей, живущих в жарких странах, меланина в коже вырабатывается очень много, поэтому кожа у них смуглая; наоборот, у людей, живущих на севере, меланина мало, поэтому кожа северян светлее.

Над зародышевым слоем находится шиповатый (или шиповидный),состоящий из одного или нескольких рядов клеток многогранной формы. Между отростками клеток, составляющих этот слой, образуются щели; в них протекает лимфа — жидкость, несущая питательные вещества в клетки и уносящая из них отработанные продукты. Над шиповатым располагается зернистый слой, состоящий из одного или нескольких рядов клеток неправильной формы. На ладонях и подошвах зернистый слой толще и имеет 4-5 рядов клеток.

Зародышевой, шиповатый и зернистый слои вместе принято называть мальпигиевым слоем. Над зернистым выделяют блестящий слой, состоящий из 3-4 рядов клеток. Он хорошо развит на ладонях и подошвах, но его почти нет на красной кайме губ. Роговой слой самый поверхностный, он сформирован из клеток, лишенных ядер. Клетки этого слоя легко отслаиваются. Роговой слой отличается плотностью, упругостью, плохо проводит тепло, электричество и предохраняет кожу от травм, ожогов, холода, влаги, химических веществ. Этот слой эпидермиса имеет особое значение в косметологии.

Процесс шелушения лежит в основе многих косметических процедур, способствующих усиленному отторжению самого поверхностного рогового слоя эпидермиса, например при удалении веснушек, пигментных пятен и др.

Собственно кожа состоит из двух слоев — сосочкового и сетчатого. В ней имеются коллагеновые, эластические и ретикулярные волокна, составляющие каркас кожи.

В сосочковом слое волокна нежнее, тоньше; в сетчатом они образуют более плотные пучки. На ощупь кожа плотна и отличается упругостью. Эти качества зависят от наличия в коже эластических волокон. В сетчатом слое кожи расположены потовые, сальные железы и волосы. Подкожная жировая клетчатка в различных частях тела имеет неодинаковую толщину: на животе, ягодицах, ладонях она развита хорошо; на ушных раковинах красной кайме губ она выражена очень слабо. У тучных людей кожа малоподвижна, у худых и истощенных людей она легко смещается. В подкожной клетчатке откладываются запасы жира, которые расходуются при болезнях или в других неблагоприятных случаях. Подкожная клетчатка защищает организм от ушибов, переохлаждений. В собственно коже и подкожной клетчатке находятся кровеносные и лимфатические сосуды, нервные окончания, волосяные фолликулы, потовые и сальные железы, мышцы.

Свободные кислоты обусловливают кислую реакцию жиров. Поэтому жиры кожных желез имеют кислую реакцию. Вышедшее на поверхность кожи сало создает на ней вместе с потом кислую водно-жировую пленку, называемую «кислотной мантией» кожи. Показатель среды этой мантии у здоровой кожи составляет 5,5-6,5. Традиционно считают, что мантия создает защитный барьер для проникновения в кожу микробов.

26.Основным свойством живых клеток является раздражимость, т. е. их способность реагировать изменением обмена веществ в ответ на действие раздражителей. Возбудимость — свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нервные, мышечные и некоторые секреторные клетки. Возбуждение — ответ ткани на ее раздражение, проявляющийся в специфической для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (генерация потенциала действия, метаболические изменения).

Одним из важных свойств живых клеток является их электрическая возбудимость, т.е. способность возбуждаться в ответ на действие электрического тока. Высокая чувствительность возбудимых тканей к действию слабого электрического тока впервые была продемонстрирована Гальвани в опытах на нервно-мышечном препарате задних лапок лягушки. Если к нервно-мышечному препарату лягушки приложить две соединенные между собой пластинки из различных металлов, например медь—цинк, таким образом, что бы одна пластинка касалась мышцы, а другая — нерва, то мышца будет сокращаться

(первый опыт Гальвани).раздражители и раздражимость.На живой организм постоянно действуют различные раздражители (свет, звук, различные запахи и др.). Воздействие раздражителя на организм называется раздражением. Организм воспринимает раздражение благодаря особой способности – раздражимости. Раздражимость – это способность клеток, тканей усиливать или уменьшать активность в ответ на воздействие раздражителей. Условно раздражители можно подразделить на три группы: физические, химические и физико-химические. К физическим раздражителям относятся механические, электрические, температурные, световые звуковые. К химическим относятся гормоны, лекарственные вещества и др. К физико-химическим раздражителям относятся изменения осмотического давления и рН крови .

К действию одних раздражителей орган специально приспособлен. Такие раздражители называют адекватными. Неадекватными будут такие раздражители, к воздействию которых данная клетка или ткань не приспособлена. Так для глаза адекватным раздражителем будут световые лучи, а неадекватным звуковые волны.

По силе раздражители подразделяются на подпороговые, пороговые и надпороговые. Пороговый раздражитель характеризуется минимальной силой, достаточной для того чтобы вызвать минимальный специфический эффект в раздражаемой ткани. Подпороговый раздражитель вызывает лишь местную реакцию. Его силы недостаточно для вызывания специфического эффекта. Нпротив, надпороговые раздражители обладают большой силой и вызывают самую большую реакцию.

Возбудимые ткани и их общие свойства

Возбудимые ткани – это нервная, мышечная и железистая структуры, которые способны спонтанно или в ответ на действие раздражителя возбуждаться. Возбуждение – это генерация потенциала действия (ПД) + распространение ПД + специфический ответ ткани на этот потенциал, например, сокращение, выделение секрета, выделение кванта медиатора.

Свойства возбудимых тканей и показатели, их характеризующие:

Свойства

1. Возбудимость – способность возбуждаться

2. Проводимость – способность проводить возбуждение, т.е. проводить ПД

3. Сократимость – способность развивать силу или напряжение при возбуждении

4. Лабильность – или функциональная подвижность – способность к ритмической активности

5. Способность выделять секрет (секреторная активность), медиатор

Показатели

Порог раздражения, реобаза, хронаксия, длительность абсолютной рефракторной фазы, скорость аккомодации.

Скорость проведения ПД, например, у нерва она может достигать 120 м/с (около 600 км/час).

Максимальная величина силы (напряжения), развиваемая при возбуждении.

Максимальное число возбуждений в единицу времени, например, нерв способен в 1с генерировать 1000 ПД.

Электрические явления в возбудимых тканях

Классификация:

Биопотенциалы – общее название всех видов электрических процессов в живых системах.

Потенциал повреждения – исторически первое понятие об электрической активности живого (демаркационный потенциал). Это разность потенциалов между неповрежденной и поврежденной поверхностями живых возбудимых тканей (мышцы, нервы). Разгадка его природы привела к созданию мембранной теории биопотенциалов.

Мембранный потенциал (МП) – это разность потенциалов между наружной и внутренней поверхностями клетки (мышечного волокна) в покое. Обычно МП, или потенциал покоя, составляет 50–80 мВ, со знаком «–» внутри клетки. При возбуждении клетки регистрируется потенциал действия (его фазы: пик, следовая негативность, следовая позитивность) – быстрое изменение мембранного потенциала во время возбуждения.

Внеклеточно-регистрируемый потенциал действия, внутриклеточно-регистрируемый потенциал действия – это варианты потенциалов действия, форма которых зависит от способа отведения 

 Ионно-мембранная теория происхождения биоэлектрических явлений (Ходжкин, Хаксли, Катц). Электрические явления в возбудимых тканях (потенциал покоя, потенциал действия, токи градиента основного обмена, токи повреждения). В настоящее время происхождение электрических явлений в тканях объясняется с точки зрения ионно-мембранной теории. В 1956-м году Ходжкин и Катц за создание ионно-мембранной теории получили Нобелевскую премию. Основные положения этой теории.  1. Электрические процессы в клетке возникают вследствие того, что мембрана обладает избирательной селективной проницаемостью для ионов. 2. В процессе жизне­деятель­но­сти происходит изменение проницаемости мембраны, в покое она проницаема для одних ионов, а при переходе в активное состояние — для других. 3. Электрические явления в тканях обусловлены неравномерным распределением ионов между цитоплазмой клетки и межклеточной жидкостью. Прежде всего, это касается натрия и калия, в какой-то степени и хлора. 4. Избирательное перемещение ионов через мембрану изменяет ее электрическое состояние и создает (формирует) новые виды электрических явлений в клетках. Происхождение электрических явлений в тканях На уровне клетки регистрируется потенциал мембраны (ПД) — разность потенциалов между наружной и внутренней поверхности мембраны в каждый данный момент времени. Стационарно, как  показатели электрического состояния клетки регистрируют 2 вида потенциала мембраны (ПМ): потенциал покоя (ПП) и потенциал действия (ПД). Потенциал покоя(ПП) — это разность потенциалов между наружной и внутренней поверхности мембраны в состоянии покоя,  т.е. в покое мембрана поляризована. Если на клетку нанести раздражение достаточной силы, клетка придет в новое, активное состояние. Если силы раздражителя недостаточно, чтобы сместить ПМ до некого критического уровня, то происходит возращение ПМ к исходному уровню, т.е. к уровню ПП. Возникшие изменения ПМ называются- локальный ответ. Если силы раздражителя достаточно, чтобы сместить ПМ до критического уровня деполяризации, то произойдет формирования потенциала действия(ПД), что свидетельствует о возбуждении клетки переходе ее в деятельное состояние. Потенциал действия и потенциал покоя -это электрические явления, регистрируемые на уровне клетки. На уровне ткани регистрируются следующие биоэлектрические явления: В состоянии покоя: — токи покоя (повреждения) — (ТП), — токи градиента основного обмена (ТГОО). В состоянии возбуждения: — токи действия (ТД).

Основная функция почек

Мочеобразование

Одной из важнейших функциональных составляющих парного органа является процесс мочеобразования.

Но на этом функциональные способности не ограничиваются. Какие важные функции выполняет данный орган:

  • Эндокринные.
  • Метаболические.
  • Процесс регуляции кислотно-щелочного баланса.

Но самой важной функцией почек является процесс образования мочи. Для этого осуществляется процесс перегонки крови

Существует несколько этапов развития данного процесса.

Процесс первой фильтрации осуществляется в почечном тельце. Происходит разделение крови и отделение из нее воды.

В воде растворены аминокислоты, глюкоза, витамины и соли. У здорового человека в моче будет полностью отсутствовать белковые соединения. Такая жидкость называется первичной мочой.

Такая моча способна вырабатываться до 180 л в сутки. Дальше подключается работа почечных канальцев, после чего запускается стадия реабсорбации.

Суть процесса состоит в поступлении воды с полезными элементами в кровь. Концентрация примесей и вредных веществ локализуется в петле нефрона.

Полезные вещества активно всасываются в кровь в области восходящих канальцев. Образовавшаяся жидкость является вторичной мочой.

Большое количество первичной мочи способно к преобразованию только 1,7 л вторичной мочи. Это сотая часть от всего количества переработанной жидкости. В такой урине не содержатся витаминов, глюкозы, другие полезные элементы.

Напротив, в урине содержатся вредные примеси и токсические вещества, которые накапливаются и концентрируются.

Они вредны для организма, а потому выводятся через мочевыводящие каналы естественным путем.

Поступление вторичной мочи в полость мочевого пузыря является неотъемлемой частью данного процесса.

Когда мочевой пузырь будет наполнен до нужных пределов, активизируется его деятельность, заключающаяся в вытеснении урины в каналы мочеиспускательной системы.

Во избежание непредвиденных ситуаций, природой заложены все защитные функции. Между мочеточником и мочевым пузырем расположен специальный соединительный сфинктер.

Его ролью является недопущение проникновения мочи, что обусловлено блокированием защитной крышкой.

Благодаря данной детали, поступающая моча в полость мочевого пузыря не способна возвращаться обратно в мочеточник.

Только при полном наполнении мочевого пузыря, человек испытывает естественные позывы к мочеиспусканию.

Количество выделяемой жидкости может быть различным. Оно может зависеть от времени суток. В дневное время вырабатывается и выделяется больше урины.

Ночью все органы и системы работают в замедленном ритме, потому выработка урины так же замедляется, сокращая ее скопившееся количество.

На процесс мочеобразования зависит количество потребляемой жидкости и пища. Которую употребляют

Важной особенностью белковой пищи является способствование выделению большего количества урины

Основная функция почек выделительная

Почка – это созданная природой уникальная и совершенная фильтровальная станция. По вене поставляется в орган кровь, проходит 2 цикла фильтрации и по артерии отправляется обратно. Непригодные отходы в жидком виде скапливаются в лоханке и отправляются по мочеточнику наружу, выбрасываются.

Основная функция почки – экскреторная, привычнее называется выделительная. При первом проходе крови через паренхиму из нее отфильтровывается плазма, соли, аминокислоты и вещества. При совершении второго круга, в кровь возвращается большая часть жидкости – плазмы, полезные аминокислоты, необходимое количество солей. Все остальное, включая токсины, мочевую и щавелевую кислоту и непригодные для дальнейшей переработки и использования вещества, выводятся вместе с водой лоханку. Это вторичная моча, которая по мочеточнику будет выведена сначала в мочевой пузырь, затем наружу.

Очистка крови в почках проходит 3 этапа.

  1. Фильтрация – когда из поступившей в орган крови удаляется вся вода и имеющиеся в ней элементы.
  2. Секреции – выделения ненужных для организма веществ;
  3. Реабсорбция — возвращение аминокислот, глюкозы, белков, плазмы и других веществ обратно в кровь.

В результате формируется урина, состоящая из 5% твердых веществ и остальное жидкость. При интоксикации организма алкоголем, пищевыми и другими продуктами, почки работают с повышенной нагрузкой, стараясь вывести как можно больше вредных спиртов и других веществ. В это время мочи образуется больше за счет выведения необходимой жидкости из тканей и плазмы крови.

Оценка функции почек

Определить функциональную активность почек помогают следующие методы:

Общий анализ мочи

Анализ мочи помогает быстро выявить нарушения в работе почек

Рутинное исследование, позволяющее оценить общее состояние почек и выявить некоторые часто встречающиеся заболевания

В общем анализе мочи особое внимание уделяется плотности (удельному весу) мочи (в норме 1005 – 1025). Изменение этого показателя в любую сторону говорит о нарушении способности почек к концентрации или разведению мочи

Другие показатели анализа для оценки работы почек:

  • белок;
  • глюкоза;
  • билирубин;
  • кетоны;
  • клеточные элементы (эритроциты, лейкоциты, цилиндры).

Все показатели функции почек можно получить, сдав общий анализ мочи в любой лаборатории или поликлинике по месту жительства.

Биохимический анализ крови

В анализе крови обращают внимание на уровень креатинина и мочевины. Определение этих параметров позволяет определить скорость клубочковой фильтрации и оценить экскреторную функцию почек

Многие современные лаборатории предлагают определение уровня цистатина C как более точного маркера скорости фильтрации крови в клубочках почек.

Функциональные пробы

Клиренс креатинина (проба Редберга) является одним из ведущих показателей способности почек очищать кровь и выводить продукты обмена с мочой. Для оценки берутся порции крови и мочи. Снижение клиренса креатинина говорит о серьезном нарушении работы почек.

Проба Зимницкого – еще один важный метод оценки функционального состояния почек. Проба позволяет определить суточные колебания удельного веса мочи, что имеет значение в диагностике многих заболеваний мочевыделительной системы.

Инструментальные методы

Экскреторная урография является основным методом определения выделительной способности почек. Введение в кровь рентгенконтрастного вещества позволяет оценить уродинамику, а также выявить некоторые патологические процессы в структуре почек (камни, опухоли и др.).

Оценка функциональной способности почек – важный этап в диагностике заболеваний мочевыделительной системы. Проведя несложные тесты, можно вовремя выявить различные патологические процессы, принять все меры по их устранению и предупредить развитие осложнений.

Читайте: Заболевания почек и их симптомы

  • Борода не растет? Или она не такая густая и шикарная, как хотелось бы? Не все еще потеряно.
  • Косметика и аксессуары для правильного ухода за бородой и усами. Зайдите сейчас!

Представление о почках в тибетской и китайской медицине

1. Почки хранят эссенцию «Цзин», отвечающую за рождение, развитие и половую функцию.

«Цзин» – основная субстанция, необходимая для жизнедеятельности. Она делиться на: врожденную – передается от родителей; приобретенную – выделяется из продуктов питания в результате пищеварительного процесса.

Почки впитывают, усваивают и хранят врожденную и приобретенную «Цзин». Субстанция «Цзин» отвечает за рост, развитие организма и за половую функцию.

Недостаточность «Цзин» почек (недостаточность почечной энергии)

Мочеполовая система

Рост и развитие организма

У мужчин:

бесплодие, гипоспермия,

импотенция,

преждевременная

эякуляция,

поллюции.

У женщин:

скудные менструации,

альгоменоррея,

бесплодие,

угроза выкидыша.

Умственная и физическая задержка развития, малый рост (низкорослость), плохая концентрация, раннее старение, замедленность движений.

   

Почки хранят «Цзин», «Цзин» «рождает» костный мозг, кости «содержатся» за счёт костного мозга.

Достаточность почечной «Цзин» – «Цзин» «рождает» костный мозг, костный мозг питает кости, и за счёт этого кости обретают твёрдость и силу.

Недостаточность почечной «Цзин» – кости недополучают необходимые элементы из костного мозга, вследствие чего теряют твёрдость, сопротивляемость болезням и внешним патогенным факторам.

Мозг делится на: костный мозг, спинной мозг и головной мозг.

Недостаточность почечной «Цзин» (недостаточность почечной энергии)

Недостаточность костного мозга (пониженная функция) – хрупкость костей, ломота и слабость костей, боль в пятке, повышенная вероятность переломов, задержка физического развития у детей, шатающиеся слабые зубы.

Пониженная функция спинного мозга – боль в пояснице, слабость спины, ломота и усталость поясницы.

Пониженная функция головного мозга – головокружение, забывчивость, слабая память, замедленная реакция, пониженная работоспособность мозга.

4. Почки отвечают за «приём энергии Ци».

«Приём энергии Ци» – это регулирующее воздействие почек на легкие и на весь процесс газообмена. С точки зрения восточной медицины, почки контролируют функцию легких.

Вследствие недостаточности почечной энергии – понижается функция «приёма энергии Ци», что приводит к короткому вдоху и длинному выдоху, затрудненному дыханию, к одышке и кашлю.

С точки зрения восточной медицины, состояние слуха полностью зависит от почечной энергии «цзин».

Недостаточность почечной энергии – недостаток энергии «Цзин»- приводит к понижению слуха, глухоте, шуму (звону) в ушах и т. д.

Почки отвечают за функциональную деятельностью внешних половых органов и прямой кишки. При недостаточности почечной энергии наблюдаются следующие симптомы: частое мочеиспускание, импотенция, преждевременное семяизвержение, запор, «после пятичасовой» понос и т.д.

6. Почки контролируют состояние волос на голове и на теле.

Почки хранят «Цзин», «Цзин» образует кровь, питает волосы. Недостаточность почечной энергии приводит к появлению седых волос и к выпадению волос в большом количестве.

Заключение

Почки отвечают за процессы роста, развития, старения организма, за функции мочеполовой системы, мозга, костной системы, дыхательной системы, за работу органов осязания, обоняния, слуха. «Недостаточность почечной энергии» оказывает негативное воздействие практически на все системы и органы, поэтому от состояния «почек» зависит общее состояние организма. Из этого следует, что сохранение почечной энергии в нормальном состоянии – это залог крепкого здоровья.

1. Анатомия почек

Почки расположены забрюшинно (ретроперитонеально) по обе стороны от позвоночника, причем правая почка несколько ниже левой. Нижний полюс левой почки лежит на уровне верхнего края тела III поясничного позвонка, а нижний полюс правой почки соответствует его середине. XII ребро пересекает заднюю поверхность левой почки почти на середине ее длины, а правую – ближе к ее верхнему краю.

Почки имеют бобовидную форму. Длина каждой почки составляет 10–12 см, ширина – 5–6 см, толщина – 3–4 см. Масса почки составляет 150–160 г. Поверхность почек гладкая. В среднем отделе почки имеется углубление – почечные ворота (hilus renalis), в которые впадают почечная артерия и нервы. Из почечных ворот выходят почечная вена и лимфатические протоки. Здесь же расположена почечная лоханка, которая переходит в мочеточник.

На разрезе почки хорошо заметны 2 слоя: корковое и мозговое вещество почки. В ткани коркового вещества находятся почечные (мальпигиевы) тельца. Во многих местах корковое вещество глубоко проникает в толщу мозгового в виде радиально расположенных почечных столбов, которые разделяют мозговое вещество на почечные пирамиды, состоящие из прямых канальцев, образующих петлю нефрона, и из проходящих в мозговом веществе собирательных трубок. Верхушки каждой почечной пирамиды образуют почечные сосочки с отверстиями, открывающимися в почечные чашки. Последние сливаются и образуют почечную лоханку, которая переходит затем в мочеточник. Почечные чашки, лоханка и мочеточник составляют мочевыводящие пути почки. Сверху почка покрыта плотной соединительнотканной капсулой.

Мочевой пузырь располагается в полости малого таза и лежит позади лобкового симфиза. При наполнении мочевого пузыря мочой его верхушка выступает над лобком и соприкасается с передней брюшной стенкой. У женщин задняя поверхность мочевого пузыря соприкасается с передней стенкой шейки матки и влагалища, а у мужчин прилежит к прямой кишке.

Женский мочеиспускательный канал короткий – длиной 2,5–3,5 см. Длина мужского мочеиспускательного канала около 16 см; его начальная (предстательная) часть проходит через предстательную железу.

Главная особенность кровоснабжения почечного (коркового) нефрона состоит в том, что междольковые артерии дважды распадаются на артериальные капилляры. Это так называемая «чудесная сеть» почки. Приносящая артериола после входа в клубочковую капсулу распадается на клубочковые капилляры, которые затем объединяются снова и образуют выносящую клубочковую артериолу. Последняя после выхода из капсулы Шумлянского-Боумена вновь распадается на капилляры, густо оплетающие проксимальные и дистальные отделы канальцев, а также петлю Генле, обеспечивая их кровью.

Второй важной особенностью кровообращения в почке является существование в почках двух кругов кровообращения: большого (коркового) и малого (юкстамедуллярного), соответствующих двум типам одноименных нефронов. Клубочки юкстамедуллярных нефронов также располагаются в корковом веществе почки, но несколько ближе к мозговому слою

Петли Генле этих нефронов глубоко опускаются в мозговое вещество почки, достигая вершин пирамид. Выносящая артериола юкстамедуллярных нефронов не распадается на вторую капиллярную сеть, а образует несколько прямых артериальных сосудов, которые направляются к вершинам пирамид, а затем, образуя поворот в виде петли, возвращаются обратно в корковое вещество в виде венозных сосудов. Прямые сосуды юкстамедуллярных нефронов, располагаясь рядом с восходящим и нисходящим отделами петли Генле и являясь существенными элементами противоточно-поворотной системы почек, выполняют важную роль в процессах осмотической концентрации и разведения мочи.

Клубочки юкстамедуллярных нефронов также располагаются в корковом веществе почки, но несколько ближе к мозговому слою. Петли Генле этих нефронов глубоко опускаются в мозговое вещество почки, достигая вершин пирамид. Выносящая артериола юкстамедуллярных нефронов не распадается на вторую капиллярную сеть, а образует несколько прямых артериальных сосудов, которые направляются к вершинам пирамид, а затем, образуя поворот в виде петли, возвращаются обратно в корковое вещество в виде венозных сосудов. Прямые сосуды юкстамедуллярных нефронов, располагаясь рядом с восходящим и нисходящим отделами петли Генле и являясь существенными элементами противоточно-поворотной системы почек, выполняют важную роль в процессах осмотической концентрации и разведения мочи.

Расположение почек в организме

Каждый из пары органов имеет бобовидную форму
. Во взрослом организме располагаются в зоне поясничного отдела, окружая позвоночный столб. У детей – немного ниже привычного уровня. Но, в процессе роста, местоположение почек возвращается на нужный уровень. Чтобы наглядно узнать их месторасположение, нужно всего лишь прислонить ладони к бокам, а большие пальцы направить вверх. На условной линии между двумя кончиками пальцев и находятся искомые органы.

Их особенностью является расположение по отношении друг другу. Правая почка находится ниже уровня левой. Причиной этому является то, что она располагается под печенью, которая не позволяет органу подняться выше. Размеры колеблются от 10 до 13 см в длину
и до 6,8 см в ширину
.

Ночное недержание мочи

Испускание мочи — процесс рефлекторный. Поступающая в мочевой пузырь моча вызывает повышение давления в нем, что раздражает рецепторы, находящиеся в стенке пузыря. Возникает возбуждение, доходящее до центра мочеиспускания в нижней части спинного мозга. Отсюда импульсы поступают к мускулатуре пузыря, заставляя ее сокращаться; сфинктер при этом расслабляется, и моча поступает из пузыря в мочеиспускательный канал. Это непроизвольное испускание мочи. Оно имеет место у грудных детей.

Старшие дети, как и взрослые, могут произвольно задерживать и вызывать мочеиспускание. Это связано с установлением корковой, условнорефлекторной регуляции мочеиспускания. Обычно к двухлетнему возрасту у детей сформированы условнорефлекторные механизмы задержки мочеиспускания не только днем, но и ночью.

Однако у 5—10% детей в возрасте до 13—14 лет наблюдается ночное недержание мочи — энурез. Это своеобразное заболевание ребенка. И потому такого ребенка надо не- стыдить, не запугивать, а лечить.

Ночному недержанию мочи способствует принятие перед сном большого количества жидкости (чай, кофе, молоко). Детям, страдающим энурезом, не следует на ночь давать много жидкой пищи, надо исключить из рациона острые блюда. В некоторых случаях энурез развивается из-за кожных заболеваний, при наличии глистов. Необходимо приучать детей держать в чистоте наружные мочеполовые органы, обмывать их теплой водой смылом утром и вечером, перед сном.

Какие ферменты руководят работой почек

В организме нет лишних органов, все нужны, и каждый из них выполняет несколько функций и работает синхронно с другими. Нарушение в одном приводит к сбоям различной степени серьезности других органах. За что отвечают почки – чтобы все ткани были чистые от токсинов, артериальное давление в норме, кровь насыщена нужными ей веществами. Дирижируют всей работой гормоны и ферменты. Непосредственно работу самого органа регулируют:

  • паратиреоидный гормон;
  • эстрадиол;
  • вазопрессин;
  • адреналин;
  • альдостерон.

Работу почек регулируют паратиреоидный гормон, эстрадиол, вазопрессин, адреналин и альдостерон

Кроме них на работу органа оказывают влияние симпатические волокна и блуждающие нервы.

Паратиреоидный гормон – паратгормон щитовидной железы. Он занимается регулировкой выведения солей из организма.

За уровень солей фосфора и кальция в крови отвечает женский гормон эстрадиол. В незначительных количествах женские гормоны вырабатываются у мужчин, и наоборот.

Вазопрессин вырабатывается мозгом, точнее его небольшим отделом – гипоталамусом. Он регулирует процесс всасывания жидкостей в самих почках. Когда человек выпивает воду и если она находится в избытке в организме, активность осморецепторов, находящихся в гипоталамусе, снижается. Количество выводимой воды органом наоборот, увеличивается. Если в организме не хватает воды, начинается обезвоженность, резко возрастает количество выделяемых мозгом пептидных гормонов – вазопрессина. Вода из тканей прекращает выводиться. При травме головы наблюдается усиленное выделение мочи, до 5 литров в сутки. Это означает, что поврежден гипоталамус и прекращена или сильно сокращена выработка вазопрессина.

Вазопрессин регулирует процесс всасывания жидкостей в самих почках

Адреналин, известный как гормон страха, вырабатывается надпочечниками. Он уменьшает мочеобразование. Его повышенное содержание в крови сопровождается отеками всех тканей, мешками под глазами.

Кора почек синтезирует гормон альдостерон. Когда он выделяется сверх меры, происходит задержка в организме жидкости и натрия. В результате отеки, сердечная недостаточность, гипертония. При недостаточной выработке альдостерона в организме объем крови сокращается, поскольку выводится много воды и натрия.

Работа почек в организме человека зависит от состояния самого органа, нормальной работы щитовидной железы, мозга, сердца.

Существенные функции почек в организме людей:

  • выделительная;
  • защитная;
  • эндокринная;
  • метаболическая;
  • гомеостатическая.

Размер почек у детей

Также на размер почки взрослого человека оказывает большое влияние возраст. Почки “растут” до двадцати – двадцати пяти лет, затем они остаются в относительной стабильности на протяжении всего среднего возраста, а после пятидесяти лет начинают уменьшаться. Хотелось бы отметить, что почка здорового человека по своим размерам не превышает размера его кулака. Необходимо отметить, что все дети развиваются по-разному, в связи с чем, возникают трудности при определении размеров почек в детском возрасте.

В процессе фильтрации почечная паренхима очищает организм от отходов (они собираются в лоханки и переправляются в мочевой пузырь). Здравствуйте. На УЗИ мне сказали. что левая почка больше правой. Почки человека – уникальный орган, выступающий в роли целой системы удаления отходов, которая работает 24 часа в сутки 7 дней в неделю. Они непрерывно очищают кровь от вредных веществ, способных (в случае скопления в большом количестве) нанести вред здоровью или даже привести к гибели организма.

Прежде чем узнать об особенностях строения и работы почек человека, определим местоположение данного парного органа. Именно поэтому в строении почки человека присутствует огромное множество кровеносных сосудов.

Образование мочи

Моча образуется из крови, которая протекает через почки. Образование мочи осуществляется в две стадии: фильтрация и реабсорбция (обратное всасывание).

Фильтрация происходит в почечном тельце. Из крови сосудистого клубочка в капсулу поступает вода с растворенными в ней веществами — аминокислотами, глюкозой, витаминами, солями. Белки в этой жидкости у здорового человека отсутствуют. Наличие белка указывает на заболевание. Образовавшаяся в капсуле жидкость называется первичной мочой. За сутки образуется около 170 л первичной мочи. Затем эта жидкость поступает в канальцы почек, где протекает реабсорбция.

Из первичной мочи, поступившей в каналец, обратно в кровь поступают вода и различные питательные вещества, а конечные продукты обмена веществ накапливаются в моче. Петля нефрона обеспечивает концентрацию мочи. В восходящем канальце продолжается обратное всасывание питательных веществ и солей. Формируется жидкость, которая называется конечной, или вторичной, мочой.

Из общего количества первичной мочи образуется около 1,5 л конечной мочи. В ней отсутствуют витамины, глюкоза, аминокислоты, зато резко повышена концентрация конечных продуктов обмена веществ, ненужных организму. Вторичная моча попадает в собирательную трубку, затем в мочеточник и выводится из организма.

Задайте свой вопрос доктору.

* — обязательные поля.

Функции почек Экскреторная (выделительная) Осморегулирующая Ионорегулирующая Инкреторная (внутрисекреторная)

Основная функции почек — выделительная — достигается процессами фильтрации, секреции. Механизм мочеобразования до сих пор полностью не ясен.

Почки играют существенную роль в системе поддержания кислотно-щелочного равновесия плазмы крови. Почки также обеспечивают постоянство концентрации осмотически активных веществ в крови при различном водном режиме для поддержания водно-солевого равновесия.

Через почки из организма выводятся конечные продукты азотистого обмена, чужеродные и токсические соединения, избыток органических и неорганических веществ, они участвуют в обмене углеводов и белков, в образовании биологически активных веществ, регулирующих уровень артериального давления, скорость секреции альдостерона надпочечниками и скорость образования эритроцитов. Почки участвуют в поддержании гомеостаза, регулируя водно-солевой обмен, и служат местом выработки биологически активных веществ.

Почки водных животных в значительной степени отличаются от почек наземных форм в связи с тем, что у водных стоит проблема выведения из организма воды, в то время как наземным необходимо удерживать воду в организме.

Функцию почек (при почечной недостаточности) может брать на себя аппарат «искусственная почка» , который осуществляет гемодиализ. Современные аппараты практически полностью заменяют функции естественных почек по очистке крови и такие больные, регулярно осуществляя гемодиализ, могут вести нормальную жизнь.

Работа почек

В клубочке происходит фильтрация под давлением (или Ультрафильтрация) . Она происходит за счет разницы давлений в приносящей почечной артериоле и отводящей почечной артериоле. Так как от почки до аорты расстояние небольшое, то кровяное давление в приносящей почечной артериоле почти такое же, как и в аорте. В капиллярах клубочка очень высокое давление. За счет того, что клетки капилляров клубочка соединены только участками базальной мембраны (щелевой контакт) , то вода и небольшие молекулы растворенных веществ выталкиваются из капилляра в боуменову капсулу. Основным фильтром является базальная мембрана.

Функции почек:

1. Мочеобразовательная функция. Почки экскретируют из организма конечные продукты обмена: мочевина, мочевая кислота, креатинин, продукты превращений билирубина, порфирины, аммиак, полиамины, гормоны и их метаболиты, посторонние вещества и избыточные соединения.

2. Поддержание гомеостаза. Почки отвечают за поддержание постоянства состава и объёма жидкостей организма, электролитов и кислотно–щелочного равновесия.

3. Эндокринная функция. Почки синтезируют гормоны, как поступающие в системный кровоток (эритропоэтин, кальцитриол), так и функционирующие локально вазоконстрикторы и вазодилататоры.

Структурно-функциональной единицей почки является нефрон. Строение всех нефронов принципиально однотипно. В каждом нефроне осуществляются все этапы образования мочи. В почках человека находится 1 — 1,2 млн нефронов.

Нефрон состоит из клубочков и канальцев. Почечный клубочек состоит из пучка капилляров, образующихся в результате разветвления афферентной артериолы — приносящего сосуда. Из клубочка выходит выносящий сосуд, из капсулы — отводящий каналец. Почечный клубочек ограничен двухслойной капсулой клубочка (боуменовой капсулой), состоящей из эпителия. Большинство клубочков располагается в наружных слоях коры (корковые клубочки), другая часть клубочков находится в глубине — в почечных столбах (юкстамедуллярные клубочки). В зависимости от расположения соответствующие нефроны подразделяют на корковые и юкстамедуллярные.

Почечные канальцы начинаются с извитого канальца и составляют проксимальный отдел нефрона, переходящий в дистальный отдел. Он включает петлю Генле, состоящую из прямого нисходящего канальца, дуги и прямого восходящего канальца. Петля Генле опускается в мозговое вещество почки.

Восходящий отдел петли Генле переходит в дистальный извитой каналец, который открывается в собирательную трубку. Собирательные трубки проходят через все слои почки и заканчиваются отверстием сосочка лоханки.

Кровоснабжение почки осуществляется по принципу двойной капиллярной сети. Почечная артерия, отходящая от брюшной аорты, распадается на артериолы, а затем на капиллярные клубочки. Последние, собираясь в выводящую артерию, несут кровь к капиллярам канальцев. Здесь вновь сосудистая сеть распадается на капилляры, оплетающие канальцы. Кровеносная система почки заканчивается почечной веной, несущей кровь в нижнюю полую вену.

Характеристика основных механизмов образования мочи.

Процесс образования мочи происходит в нефроне с участием всех его отделов. Начинается процесс мочеобразования с клубочковой фильтрации воды и растворенных веществ из плазмы крови, протекающей по капиллярам клубочков, в полость капсулы клубочка (боуменова капсула).

Микроструктура и функции клубочкового фильтра:

Клубочковый фильтр состоит из 20—40 капилляров, окруженных капсулой клубочка. Фильтрация плазмы крови осуществляется через трехслойную мембрану, состоящую из эндотелия капилляров, базальной мембраны и эпителиальных клеток, обращенных в сторону капсулы клубочка.

Базальная мембрана представляет гомогенный слой с множеством пор. Общая поверхность, через которую осуществляется фильтрация, равна поверхности всех капилляров сосудистого клубочка.

Мембрана почечного фильтра пропускает только те молекулы, размеры которых не превышают величины пор. Неорганические соли, низкомолекулярные органические вещества, аминокислоты, сахар, мочевина, мочевая кислота и др. свободно проходят через почечный фильтр и поступают в полость капсулы. Белки, крупные молекулы через почечный фильтр не проходят. Фильтрат плазмы крови, поступившей в капсулу, образует первичную мочу, состав которой аналогичен плазме крови: в ней содержатся все вещества, за исключением крупномолекулярных белков.

Химический анализ первичной мочи, полученной с помощью микропипетки, введенной в капсулу (опыт Ричардса), показал, что низкомолекулярные вещества находятся в первичной моче в той же концентрации, что и в плазме крови. Осмотическое давление, электропроводимость и рН первичной мочи соответствуют таковым плазмы крови.

Таким образом, первичная моча представляет собой безбелковый ультрафильтрат плазмы крови.

Мочеобразовательная функция. Почки экскретируют из организма конечные продукты обмена, посторонние вещества и избыточные соединения. Оттекающие ежесуточно от почек 1,5 л вторичной мочи через мочеотводящие пути выводятся из организма. Именно по отношению к мочеобразовательной функции (точнее по отношению к вторичной, или дефинитивной моче) применяют термин «экскреция».

Конечные продукты обмена: мочевина, мочевая кислота, креатинин, продукты превращений билирубина, порфирины, аммиак, полиамины, гормоны и их метаболиты.

Мочевина образуется в результате катаболизма аминокислот (экскретируется 25–35 г мочевины в сутки). Мочевая кислота образуется из нуклеиновых кислот, за 1 сут с мочой экскретируется около 0,6 г мочевой кислоты.

 Креатинин образуется из мышечного креатина.

Порфобилиногены и уробилиногены (уробилин) — продукты превращений билирубина. За сутки из организма выделяется с мочой от 0 до 2 мг

Порфирины — продукты метаболизма гема — в виде копропорфирина и уропорфирина.

Аммиак, образующийся повсеместно в результате декарбоксилирования аминокислот, выводится из организма в виде мочевины или иона аммония (NH4+).

Гормоны и их метаболиты

Полиамины спермидин и спермин повсеместно синтезируются из орнитина.

#88. Анализ процессов реабсорбции в нефроне.

В результате фильтрации образуется первичная моча, содержащая необходимую организму воду и растворенные в ней вещества, большинство из которых представляют биологическую ценность, например аминокислоты, углеводы, соли и др. Лишь некоторые из веществ, растворенных в первичной моче требуют выведения из организма. К ним относятся мочевина, мочевые кислоты, креатинин, сульфаты.

Необходимые для организма биологически полезные вещества возвращаются (реабсорбируются) в кровь. В результате реабсорбции в сутки образуется 1,5—2 л конечной мочи, которая выделяется из организма, остальной объем первичной мочи, равный 150—160 л, возвращается в кровоток.

Процессы фильтрации, реабсорбции и секреции веществ, происходящие в почечных нефронах.

Процесс реабсорбции начинается в проксимальном отделе нефрона в проксимальных извитых канальцах, куда поступает первичная моча из капсулы клубочка. В этом отделе нефрона происходит обязательная реабсорбция. В извитых канальцах первого порядка реабсорбируется 80 % натрия, за которым по осмотическому градиенту движется в кровоток вода. Объем мочи уменьшается в 8 раз и одновременно увеличивается во столько же раз концентрация растворенных в ней веществ. Под влиянием концентрационного градиента пассивно за счет диффузии реабсорбируются в кровь аминокислоты, глюкоза, фосфаты, бикарбонаты и другие вещества. Затем в петле нефрона (петля Генле) моча последовательно концентрируется и ее объем уменьшается. В извитых канальцах второго порядка происходит дальнейшая реабсорбция воды и растворенных веществ, которая здесь носит характер необязательной, т.е. факультативной, реабсорбции.

Процесс реабсорбции веществ из канальцев в кровоток осуществляется за счет первичной реабсорбции натрия путем активного транспорта. Реабсорбция воды происходит пассивно вслед за натрием по осмотическому градиенту.

В результате всасывания в кровоток воды повышается концентрация всех находящихся в моче веществ. Появляется концентрационный градиент между мочой, находящейся в канальцах, и плазмой крови, которая обеспечивает движение растворенных в моче веществ в плазму крови за счет диффузии по градиенту. Активный транспорт натрия против концентрационного градиента связан с окислительными ферментативными процессами.

В дистальных извитых канальцах происходит дальнейшее всасывание натрия, калия, воды, аминокислот, глюкозы и других веществ за счет тех же самых механизмов, что и при реабсорбции в извитых канальцах первого порядка. Эта реабсорбция не является постоянной, а зависит от уровня натрия, калия и других веществ крови и мочи (факультативная реабсорбция).

В собирательных трубках моча окончательно концентрируется благодаря пассивному току воды по осмотическому градиенту.

Порог выведения. Все вещества, содержащиеся в плазме крови, можно разделить на пороговые и непороговые. К пороговым веществам относятся такие, которые выделяются в составе конечной мочи только при достижении определенной концентрации их в крови; например, глюкоза поступает в конечную мочу только в том случае, если ее содержание в крови превышает 6,9 ммоль/л. Выведение пороговых веществ из организма связано с тем, что при повышении определенной концентрации в плазме крови не происходит их полной реабсорбции из первичной мочи, так как транспортные системы почки ограничены.

Непороговые вещества в отличие от пороговых выводятся с мочой из организма при любой, даже самой низкой, концентрации их в плазме крови. Примером такого вещества является мочевина.

4. Эндокринная функция почек.

В почках имеется юкстагломерулярный аппарат (околоклубочковый аппарат), вырабатывающий гормон ренин (регулирует артериальное давление) и участвующий при выработке эритропоэтина (регулирует эритроцитопоэз). ЮГА состоит из следующих компонентов:

1. Юкстагломерулярные клетки – лежат под эндотелием приносящих артериол, в выносящих артериолах их мало. В цитоплазме содержат ШИК-положительные рениновые гранулы.

2. Клетки плотного пятна – утолщенный эпителий участка стенки дистальных извитых канальцев, лежащих между приносящей и выносящей артериолами. Имеют рецепторы для улавливания концентрации Na+ в моче.

3. Юкставаскулярные клетки (клетки Гурмагтига) – полигональные клетки лежащие в триугольном пространстве между плотным пятном и приносящим и выносящим артериолами.

4. Мезангиальные клетки (располагаются на наружной поверхности капилляров клубочка среди подоцитов, см. выше строение почечных телец).

ЮГА вырабатывает гормон ренин; под воздействием ренина глобулин плазмы крови ангиотензиноген превращается сначала в ангиотензин I, далее в ангиотензин II. Ангиотензин II с одной стороны оказывает прямой сосудосуживающий эффект и повышение артериального давления, с другой стороны усиливает синтез альдостерона в клубочковой зоне надпочечников => усиливается реабсорбция Na+ и воды в почках => увеличивается объем тканевой жидкости в организме => увеличивается объем циркулирующей крови => повышение артериального давления.

В эпителиоцитах петель Генле и собирательных трубочек вырабатываются простагландины, оказывающие сосудорасширяющее действие и увеличение клубочкового кровотока, вследсвие чего увеличивается объем выделяемой мочи.

В эпителиоцитах дистальных канальцев нефрона синтезируется каллекреин, под воздействием которого белок плазмы кининоген переходит в активную форму кинины. Кинины обладают сильным сосудорасширяющим действием, снижают реабсорбцию Na+ и воды ? увеличивается мочевыделение.

5. Регуляция функций почек.

1. Функция почек зависит от артериального давления, т.е. от тонуса сосудов, регулируемых симпатическими и парасимпатическими нервными волокнами.

2. Эндокринная регуляция:

а) альдостерон клубочковой зоны надпочечников усиливает активную реабсорбцию солей в большей степени в дистальных, в меньшей степени в проксимальных извитых канальцах почек;

б) антидиуретический гормон (вазопрессин) супраоптических м паравентрикулярных ядер передней части гипоталамуса, повышая проницаемость стенок дистальных извитых канальцев и собирательных трубочек, усиливает пассивную реабсорбцию воды.

ЛЕКЦИЯ 22: Мужская половая система.

План:

1. Источники, закладка и развитие органов мужской половой системы.

2. Гистологическое строение семенников.

3. Строение и функции придатка яичка.

4. Строение и функции дополнительных половых желез.

5. Нормальные показатели спермы у здорового мужчины.

1. Источники, закладка и развитие органов мужской половой системы.

Закладка и развитие половой системы тесно связано с мочевыделительной системой, а именно с I почкой. Начальный этап закладки и развития органов поповой системы у лиц мужского и женского пола протекают одинаково и поэтому называется индифферентной стадией. На 4-ой недели эмбриогенеза утолщается целомический эпителий (висцеральный листок спланхнотомов) на поверхности I почек – эти утолщения эпителия называются половыми валиками. В половые валики начинают мигрировать первичные половые клетки – гонобласты. Гонобласты впервые появляются в составе внезародышевой энтодермы желточного мешка, далее они мигрируют в стенку задней кишки, а там попадают в кровоток и по крови достигают и внедряются в половые валики. В дальнейшем эпителий половых валиков вместе с гонобластами начинает врастать в подлежащую мезенхиму в виде тяжей – образуются половые шнуры. Половые шнуры состоят из эпителиальных клеток и гонобластов. Первоначально половые шнуры сохраняют связь с целомическим эпителием, а затем отрываются от него. Примерно в это же время мезонефральный (Вольфов) проток (см. эмбриогенез мочевыделительной системы) расщепляется и образуется параллельно ему парамезанефральный (Мюллеров) проток, впадающий также в клоаку. На этом индифферентная стадия развития половой системы заканчивается.

В последующем половые шнуры срастаются с канальцами I почек. Из половых шнуров образуются эпителиосперматогенный слой извитых семенных канальцев яичка ( из гонобластов – половые клетки, из клеток целомического эпителия – сустенотоциты), эпителий прямых канальцев и сети семенника, а из эпителия I почек – эпителий выносящих канальцев и канала придатка яичка. Из Мезонефрального протока образуется семявыносящий проток. Из окружающей мезенхимы формируется соединительнотканная капсула, белочная оболочка и средостение яичка, интерстециальные клетки (Лейдига), соединительнотканные элементы и миоциты семявыносящих путей.

Семеные пузырьки и предстательная железа развиваются из выпячиваний стенки мочеполового синуса (часть клоаки, отделяющаяся от анального отдела прямой кишки уроректальной складкой).

Из висцерального листка спланхнотомов образуется серозный покров яичек.

Парамезонефральный (Мюллеров) проток при закладке мужской половой системы не принимает участия и в большей части подвергается обратному развитию, только из его самой дистальной части образуется рудиментарная мужская маточка в толще предстательной железы.

Мужские половые железы (яички) закладываются на поверхности I почки, т.е. в брюшной полости в поясничной области забрюшинно. По мере развития яичко мигрирует по задней стенке брюшной полости вниз, покрывается брюшиной, примерно на 7-м месяце эмбрионального развития проходит по паховму каналу и незадолго до рождения опускается в мошонку. Нарушение опускания 1 яичка в мошонку называется монорхизмом, обоих яичек – крипторхизмом. Иногда в дальнейшем яичко (и) может спонтанно опуститься в мошонку, но чаще приходится прибегнуть к оперативному вмешательству. Подобная операция с морфологической точки зрения должна быть сделана в возрасте до 3 лет, поскольку именно в эти сроки в половых тяжах появляется просвет, т.е. половые тяжи превращаются в извитые семенные канальцы. Если яичко не опустится в мошонку, то в 5-6 летнем возрасте в сперматогенном эпителие начинаются необратимые дистрофические изменения, приводящие в последующем к мужскому бесплодию.

3.5.2. Исследование функций почек

Исследование азотовыделительной и гомеостатической функций почек. Азотовыделительная функция является одной из важнейших функций почек и состоит в экскреции конечных продуктов азотистого обмена: мочевины, креатинина, мочевой кислоты, пуриновых оснований, индикана. Наибольшее значение для исследования функции почек имеет определение концентрации в крови мочевины и креатинина. Креатинин образуется в мышечной ткани из креатинфосфата и выводится из организма почками. Скорость образования креатинина постоянна, определяется мышечной массой человека и не зависит от наличия белков в рационе.

Мочевина синтезируется преимущественно в печени в результате распада аминокислот и азотистых оснований. Около 90 % мочевины выводится из организма почками, остальные 10 % — через желудочно-кишечный тракт. Содержание мочевины в крови зависит не только от скорости ее выведения почками, но и от интенсивности белкового обмена и функции печени.

Мочевая кислота — конечный продукт обмена пуриновых оснований. Повышение концентрации мочевой кислоты наблюдается как при почечной недостаточности, так и при экстраренальной патологии (подагра, мочекислый диатез, лейкоз, сепсис и др.). Нарушение азотовыделительной функции почек характеризуется повышением концентрации азотистых шлаков в сыворотке крови. У здорового человека содержание мочевины в сыворотке крови составляет 2,5-9 ммоль/л, а креатинина — 100-180 мкмоль/л.

Под гомеостатической функцией почек понимают поддержание постоянства внутренней среды организма, в частности водно-электролитного баланса и осмотического давления плазмы крови. Эта функция осуществляется благодаря регуляции экскреции воды и электролитов (ионов Na+, K+, Са2+, фосфатов и др.). Почки принимают участие в регуляции кислотно-основного состояния организма. Почки реабсорбируют в кровь буферные основания (бикарбонаты) и экскретируют ионы Н+, препятствуя тем самым развитию ацидоза.

Исследование концентрационной функции почек. Под концентрационной функцией почек понимают их способность выделять мочу с осмотическим давлением, большим, чем у плазмы крови. Наиболее простой способ исследования этой функции — измерение относительной плотности мочи. Относительная плотность мочи зависит от концентрации растворенных в ней веществ, в основном мочевины.

В норме в течение суток относительная плотность мочи изменяется в широких пределах — от 1004 до 1030 (обычно от 1012 до 1020). Если относительная плотность мочи в какой-либо из порций, взятой в течение суток, достигает 1018-1020, то это считается признаком сохранности концентрационной функции почек. Для более подробной оценки этой функции в клинической практике наиболее часто используют пробу Зимницкого и пробу на концентрирование.

Проба Зимницкого заключается в сборе мочи через каждые 3 ч в течение суток (всего восемь порций) с определением объема и относительной плотности мочи в каждой порции. Оценка пробы Зимницкого проводится по следующим показателям: суммарный суточный диурез и отдельно дневной и ночной, относительная плотность дневной и ночной мочи. При нарушении концентрационной функции почек наблюдается снижение относительной плотности мочи (гипостенурия), а также уменьшение амплитуды колебаний относительной плотности дневной и ночной мочи (изостенурия). В тяжелых случаях относительная плотность мочи снижена и практически одинакова в дневное и ночное время (изогипостенурия).

Одним из методов оценки функции почек является проба на концентрирование (с сухоядением). Во время пробы на концентрирование пациент в течение нескольких часов не пьет и употребляет только продукты с низким содержанием воды. Мочу собирают с интервалом в 2 или 3 ч (в ночное время — одну порцию за 12 ч), определяют относительную плотность мочи и объем каждой порции.

Основное диагностическое значение имеет снижение концентрационной функции — признак поражения почечных канальцев. Так, при развитии хронической почечной недостаточности изостенурия проявляется раньше, чем азотемия, а при некоторых заболеваниях (например, при хроническом пиелонефрите) может обнаруживаться раньше, чем снижение клубочковой фильтрации.

Исследование парциальных функций почек. Изучение парциальных функций почек основано на определении клиренса веществ, которые удаляются из организма только с мочой, не разрушаясь и не синтезируясь в почках и в мочевых путях. Клиренс (англ.clearance — очищение) вещества — это объем плазмы крови, полностью «очищаемый» от этого вещества за минуту. Клиренс пропорционален скорости выведения вещества из крови.

Чаще всего для оценки парциальных функций почек применяют исследование клубочковой фильтрации по эндогенному креатинину с определением коэффициента клиренса (очищения). Для этого определяют концентрацию креатинина в моче (U), в крови (Р) и минутный диурез (V). Коэффициент очищения рассчитывают по формуле: С = UV/ P.

Для оценки скорости клубочковой фильтрации наиболее часто используется проба Реберга.

При проведении пробы Реберга определяют содержание креати-нина в моче, собранной пациентом в течение суток. По окончании сбора мочи производят забор крови из вены и также определяют концентрацию креатинина. Кроме того, рассчитывают минутный диурез. Клиренс эндогенного креатинина, практически равный скорости клубочковой фильтрации, определяется по приведенной выше формуле и составляет в норме 80-120 мл/мин.

Скорость клубочковой фильтрации характеризует функцию почечных клубочков. Наибольшее диагностическое значение имеет снижение скорости клубочковой фильтрации — одно из основных проявлений патологических процессов, протекающих с преимущественным поражением клубочков почек (например, гломерулонефрит). В частности, скорость клубочковой фильтрации учитывается при определении стадии хронической почечной недостаточности — исхода многих болезней почек, обусловленного прогрессирующим уменьшением количества функционирующих нефронов. Снижение скорости клубочковой фильтрации может быть вызвано и экстраренальными причинами, прежде всего гиподинамическими нарушениями (гиповолемией, шоком).

Определение величины почечного кровотока. Наиболее точным из используемых в клинической практике способов измерения величины кровотока в почках является определение клиренса парааминогиппуровой кислоты (ПАГ). Это вещество свободно фильтруется в клубочках, не реабсорбируется и интенсивно секретируется в проксимальных канальцах, поэтому клиренс ПАГ практически равен объему плазмы, поступающей в почки за 1 мин.

Клиренс ПАГ характеризует эффективный почечный плазмоток, т. е. количество плазмы, притекающей к клубочкам и проксимальным канальцам коркового вещества почки. Эффективный почечный плаз-моток в норме равен 550-650 мл/мин — около 90 % общего почечного плазмотока. Остальные 10 % плазмы попадают в систему юкстамедуллярных нефронов, где ПАГ практически не секретируется.

Снижение клиренса ПАГ характерно для состояний, связанных с нарушением функции клубочков: гломерулонефрита, хронического пиелонефрита, острой почечной недостаточности и др. К экстраренальным причинам снижения эффективного почечного плазмотока и эффективного почечного кровотока относят недостаточность кровообращения и водно-электролитные нарушения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *