Глюкоза где находится в организме: Глюкоза + продукты богатые глюкозой – в каких продуктах питания, суточная норма, действие на организм

Содержание

Где содержится глюкоза: список продуктов :: SYL.ru

Где содержатся фруктоза и глюкоза, лучше всего знают диабетики, вынужденные четко следить за своей программой питания. Не будет лишней эта информация и для тех, кто заинтересован в создании качественной диеты. В норме глюкоза в наш организм попадает ежедневно, так как содержится в самых разных продуктах. При ее переработке человеческие системы, ткани получают необходимые запасы энергии, поэтому отказ от глюкозы невозможен, но уровень этого соединения нужно держать под контролем, чтобы не столкнуться с неприятностями.

Общая информация

Глюкоза, фруктоза поступают из богатой углеводами пищи. В организме эти соединения кровью разносятся по тканям и клеткам. Особенно много глюкозы в винограде, поэтому нередко его называют сахаром. В несколько меньшей степени, но все же много, находят соединение в других фруктах, ягодах. Зная концентрации, можно спланировать хорошую, полезную, здоровую, полноценную диету.

где больше всего содержится глюкозы

Без глюкозы существовать человек не сможет, поэтому полностью отказываться от ее источников невозможно. Продукты, где больше всего содержится глюкозы, перечислены ниже:

  • сахар;
  • сладости;
  • пшеничный хлеб;
  • виноград;
  • дыни, бананы;
  • бобы, фасоль;
  • капуста;
  • морковь.

Особый случай

Список продуктов, где содержится глюкоза, можно смело начинать с картофеля, кукурузы. Отличительная особенность этих продуктов – форма углевода: десятипроцентный крахмал. Именно из него клетки организма и добывают энергию. А вот мед отличается тем, что кроме глюкозы содержит и фруктозу, то есть вдвойне полезен для человеческого организма.

где содержится много глюкозы

Чтобы поддерживать организм в норме, необходимо ежедневно получать с пищей не менее 50 г углевода. Рекомендуют отдавать предпочтение сложным продуктам питания, чтобы клетки самостоятельно вырабатывали моносахарид. Конечно, гораздо проще употреблять в пищу очищенный сахар, но это негативно сказывается на работе всех систем организма.

Как избавиться от излишков?

Важно не только знать, где содержится много глюкозы (выше уже перечислены основные источники), но и иметь представление о тех компонентах диеты, которые помогают снизить концентрацию этого углевода в кровеносной системе.

Чтобы нормализовать концентрацию сахаров в крови, следует включить в постоянное меню:

  • соевый сыр;
  • орехи;
  • корицу;
  • овсянку;
  • цитрус;
  • имбирный корень.

Полезные компоненты

Положительным влиянием на человеческое здоровье отличаются все разновидности капусты, плоды вишни и авокадо, а также масло, отжимаемое изо льна. Обязательно нужно включать в свой рацион не только те продукты, где содержится глюкоза, но и бобовые, томаты, мясо птицы, рыбу, злаки, благодаря которым корректируется норма углевода. Хорошим дополнением программы питания будут лук, грибы, черника, арбуз, напитки из трав и плодов, собранных самостоятельно (смородина, шиповник, боярышник). Можно готовить фреши на основе груши, малины, картофеля, пить капустный сок и свежий чай – предпочтение отдают зеленому. Полезными в разумных количествах будут сыр, масло.

где содержится глюкоза список продуктов

Диетологи, рассказывая, где содержится глюкоза и какие продукты помогают корректировать ее концентрацию в организме, обращают внимание на свежие овощи. Впрочем, полезны они не только благодаря способности контролировать уровень углевода, но и за счет обилия витаминов.

Где содержится глюкоза: таблица

Список наиболее богатых углеводом продуктов можно увидеть на фото ниже.

фруктоза и глюкоза где содержится

Указанные концентрации примерные. Для овощей, фруктов средние показатели вывести сложно, слишком многое зависит от конкретного сорта и условий произрастания растения.

Зачем нам это нужно?

Почему важно употреблять те продукты, где содержится глюкоза, могут достаточно подробно объяснить диетологи. Углевод активно участвует в обменных процессах в организме. Недостаточность проявляется общей слабостью и повышенной утомляемостью, человек ощущает сперва легкое недомогание, постепенно ситуация ухудшается. Глюкоза – универсальный энергетический источник, который в адекватных концентрациях благотворно влияет на деятельность сосудов, сердца, нервной системы, печени.

Большая часть медикаментов из класса заменителей крови, а также призванных бороться с шоковыми состояниями, инфицированием содержат глюкозу в качестве активного компонента. Известно, что она помогает справляться со стрессами, перенапряжением, положительно влияет на самочувствие.

А сколько нужно?

Потребность в глюкозе строго индивидуальна. Многое определяется образом жизни человека, видом его деятельности, а также общим состоянием организма, психики. Так, если человек ведет активную жизнь, сталкивается с постоянными нагрузками, это приводит к существенному расходу глюкозы – основного источника энергии. Для поддержания здоровья нужно потреблять достаточно много углеводов. При малоактивном образе и наличии ряда патологий придется воздерживаться от обилия таких продуктов, разрешая себе лишь ограниченный объем и контролируя качество крови с установленной регулярностью.

где содержится глюкоза

Это любопытно

Впервые глюкозу открыли в начале позапрошлого столетия, честь быть первым принадлежит английскому химику Уильяму Прауту. Обнаруженный углевод вызвал интерес научного сообщества, было поставлено немало экспериментов, показавших, что именно из него в организме добывается энергия. Кроме растительного крахмала глюкозой богат гликоген мышечных тканей.

Чтобы высчитать точно, сколько в день глюкозы должно поступать в организм, можно обратиться к диетологу. Для расчета учитывают вес человека: например, для 75 кг в среднем нужно 190 г глюкозы, из которых две трети расходуются мозгом. Если наблюдаются проблемы с работой желудка или кишечника, концентрацию глюкозы в пище рекомендуют повысить, так как ее усвояемость ухудшается. Корректировка требуется, если есть основания для причисления к группе риска по диабету.

Глюкоза: особенности влияния на организм

Известно, что этот углевод стимулирует иммунитет, поэтому употребление содержащих его продуктов помогает в реабилитационном периоде после различных патологий. Одновременно с этим компонент обеззараживает, поскольку инициирует функционирование печени. Глюкоза борется с депрессиями, так как помогает производить эндорфин. Ученые обнаружили, что под влиянием углевода активизируется деятельность элементов кровеносной системы, а вместе с этим контролируется аппетит.

В крови количество глюкозы регулируется гормоном инсулином, производимым поджелудочной железой. Под влиянием этого соединения происходит быстрое всасывание углевода. При нарушении выработки инсулина наблюдаются проблемы с усвояемостью, опасные для жизни больного. Для их купирования необходимо регулярное введение синтетического гормонального заменителя.

Глюкоза, продукты и польза: что выбрать?

Список содержащих углевод ингредиентов, подходящих для приготовления пищи, достаточно широкий. Не все из них в равной степени полезны. Как говорят врачи, предпочтение по возможности нужно отдавать меду. Это природный антибиотик, который одновременно богат фруктозой, глюкозой. Правда, нужно быть осторожным: переизбыток меда в организме может привести к неприятным реакциям. Также необходимо перед употреблением проверить, нет ли аллергии: именно на мед она развивается достаточно часто, особенно у маленьких детей.

глюкоза где содержится таблица

Аккуратность – залог здоровья

Переизбыток моносахарида провоцирует набор лишнего веса, проблемы с обменом веществ и ухудшение общего состояния организма. Чтобы не сталкиваться с такими итогами, нужно четко контролировать объемы поступающей в пищу глюкозы. Если анализы показывают повышенную концентрацию этого соединения, нужно задуматься о введении специальных продуктов, снижающих показатель – выше дан перечень.

Продукты, содержащие глюкозу | Здоровое питание

Фев-4-2014 Автор: KoshkaS



Функция глюкозы в организме человека:

Наш организм производит глюкозу. Глюкоза — это одна из форм сахара, которая образуется в нашем теле после еды. Образуется глюкоза благодаря поступлению в организм углеводов, протеинов и жиров. Затем она поступает в кровь. Наша кровь поглощает глюкозу и создает энергию, необходимую для движения и протекания химических процессов в теле. Мышечная ткань, органы и клетки организма используют эту энергию.

Глюкоза берет активное участие во многих процессах организма человека:

  • участвует в важных обменных процессах;
  • считается главным источником энергии;
  • стимулирует работу сердечно – сосудистой системы;
  • используется в лечебных целях для лечения многих заболеваний: патологии печени, болезни центральной нервной системы, различные инфекции, интоксикации организма и других болезнях. Глюкоза содержится во многих противокашлевых препаратах, кровезаменителях;
  • обеспечивает питание клеток головного мозга;
  • устраняет чувство голода;
  • снимает стресс, нормализует работу нервной системы.

Помимо вышеперечисленных преимуществ глюкозы в организме человека, она улучшает умственную и физическую работоспособность, нормализует работу внутренних органов и улучшает общее состояние здоровья.

Для мозга глюкоза представляет единственное «горючее». Для успешного функционирования нейроны мозга требуют постоянного поступления хотя бы 125-150 грамм глюкозы в день.

Организм получает необходимую ему энергию, пока содержание сахара в крови — на нормальном уровне. Чересчур высокий или же чересчур низкий уровень вызывает отклонения от нормального режима жизнедеятельности нашего организма. Вот почем нам важно знать, какие продукты питания являются источниками глюкозы.

Глюкоза поступает в наш организм с пищевыми продуктами, содержащими углеводы. Поддерживает необходимый уровень глюкозы в крови особый гормональный механизм. Зачастую, после принятия пищи уровень сахара в крови несколько повышается. Это заставляет выделяться гормон поджелудочной железы – инсулин. Этот гормон способствует усваиванию глюкозы клетками организма и понижает ее концентрацию в крови до требуемых цифр. Кроме того, инсулин образует в нашем организме определенный запас глюкозы, содержащийся в виде гликогена в печени.

Глюкоза очень скоро усваивается в нашей пищеварительной системе. Она является мономером, из которого образуются некоторые полисахариды, к примеру — гликоген, целлюлоза и крахмал. В результате окисления глюкозы в организме происходит выброс энергии, которая необходима для протекания различных жизненных процессов.

Если глюкоза поступает в организм в избыточном количестве, она довольно быстро трансформируется в запасы энергии. Глюкоза превращается в гликоген, который откладывается в различных местах и тканях организма, в качестве запасного источника энергии. Если же запасы гликогена и так достаточно велики, тогда глюкоза станет превращаться в жир, который откладывается в организме.

Наши мышцы не могут обойтись без гликогена. Ведь именно он, распадаясь, высвобождает энергию, необходимую для работы и восстановления клеток. В мышцах гликоген расходуется постоянно, но его запасы не становятся при этом меньше. Дело в том, что из печени все время приходят новые порции этого вещества, чтобы его количество оставалось постоянным.

Недостаток глюкозы в организме, симптомы:

Причинами гипогликемии (нехватки глюкозы) могут быть: продолжительное голодание, недоедание, не здоровая диета, различные заболевания и так далее.

Признаки недостатка глюкозы могут проявляться на протяжении всего дня. Нередко человек, страдая от них, может и не догадываться о расстройстве. К примеру, ощущение усталости, изнуренности в промежуток между 11 утра и 3 часами дня – первый симптом недостаточного содержания сахара. Проще всего обнаружить симптомы, если проследить за реакции организма после сладкого пончика или кофе.

Итак, первые симптомы недостатка глюкозы:

  • слабость, ощущение усталости,
  • дрожь,
  • потоотделение,
  • головная боль,
  • чувство голода,
  • сонливость,
  • раздражение,
  • злоба,
  • спутанные мысли,
  • проблемы со зрением,
  • двоение в глазах,
  • чувство неловкости,
  • частое сердцебиение.

Из продуктов, содержащих глюкозу, необходимо отметить виноград, вишни и черешни, малину, землянику, сливы, арбуз, бананы, тыкву, капусту белокочанную, морковь, картофель, зерновые и злаковые культуры, мед.

Продукты содержащие глюкозу, таблица:

ПродуктСодержание глюкозы в г, на 100 грамм
мед80,4
мармелад79,0
финики69,0
курага66,5
изюм66,0
шоколад63,0
яблоки7,9
виноград7,8
свекла6,7
морковь5,7
вишня5,4
черешня5,4
слива3,0
тыква2,7
арбуз2,4
абрикосы2,3
персики2,0
апельсины2,5

Основные растительные продукты,  источники глюкозы — это виноград, черешня, вишня, малина, земляника, сливы, арбуз. Среди овощей первенство по содержанию глюкозы держат тыква, белокочанная капуста и морковка.

Поделитесь статьей с друзьями в социальных сетях!

Еще по этой же теме:

Глюкоза и мышечная деятельность

Дается классификация углеводов и их переваривание в организме человека, определение и формулы глюкозы и фруктозы. Описана история открытия глюкозы. Приведены данные о концентрации глюкозы в крови в норме и патологии. Также описано изменение концентрации глюкозы в крови при мышечной деятельности.

Глюкоза и мышечная деятельность

Классификация углеводов

В зависимости от сложности строения молекул углеводы классифицируются на три основных класса: моносахариды, олисахариды (дисахариды) и полисахариды.

К моносахаридам относятся простые углеводы, которые при гидролизе не распадаются на более простые молекулы. Примером моносахаридов являются глюкоза и фруктоза,  дисахаридов — сахароза, мальтоза и лактоза, полисахаридов – крахмал и клетчатка в растениях, гликоген в тканях человека и животных.

Определение

Глюкоза (виноградный сахар) – моносахарид, один из самых распространенных источников энергии в живых организмах.

Формула глюкозы – С6Н12О6.

Глюкоза и фруктоза

Фруктоза имеет ту же формулу, что и глюкоза, но другую структуру молекулы (рис. 1). Формула фруктозыС6Н12О6.

Глюкоза и мышечная деятельность

Рис.1.

История открытия глюкозы

В чистом виде глюкозу в 1747 году выделил немецкий химик Андреас Маргграф из виноградного сока. В 1801 году Жозеф Луи Пруст выделил глюкозу из виноградного сока. Поэтому ее еще называют виноградным сахаром.

Где находится в организме человека

Свободная глюкоза в организме человека в основном находится в крови. Концентрация глюкозы в крови постоянная и колеблется в узком диапазоне от 3,9 до 5,9 ммоль/л. Если концентрация глюкозы в капиллярной крови натощак превышает 6,1 ммоль/л, а в венозной – 7 ммоль/л — это может свидетельствовать о наличии заболевания, которое называется сахарный диабет (ВОЗ 1999-2013).

Переваривание углеводов в организме человека

Основными углеводами, поступающими в организм человека, являются: крахмал, клетчатка, сахароза, лактоза и гликоген.

В ротовой полости под действием фермента слюны амилазы крахмал и гликоген распадаются на низкомолекулярные полисахариды. Дальнейший распад углеводов протекает в тонкой кишке под действием фермента амилазы поджелудочного сока. В результате образуется дисахарид мальтоза, состоящий из двух остатков глюкозы. Завершается переваривание углеводов превращением образовавшейся мальтозы и других пищевых дисахаридов (сахарозы, лактозы) в моносахариды (глюкозу, фруктозу и галактозу). Главным образовавшимся моносахаридом является глюкоза.

Образовавшиеся моносахариды попадают в кровь и по системе воротной вены поступают вначале в печень. В печень поступает в основном глюкоза, потому что по мере попадания в кровь моносахариды превращаются в глюкозу. В печени глюкоза превращается в гликоген, который представляет собой запасную форму глюкозы. Синтез гликогена ускоряется гормоном инсулином.

Часть глюкозы из крови попадает в мышцы, где также синтезируется гликоген. Белком, переносящим глюкозу в мышцы, является GLUT4.

Между приемами пищи в печени протекает обратный процесс – гликоген распадается на глюкозу, которая поступает в кровь. В состоянии покоя расщеплению гликогена способствует гормон глюкагон (С.С. Михайлов, 2009).


О взаимосвязи гормонов и мышечной массы можно прочесть в моей книге «Гормоны и гипертрофия скелетных мышц человека»


Сахарный диабет

Если уровень глюкозы в крови постоянно превышает нормальные значения, развивается заболевание, которое называется сахарный диабет. Причиной этого заболевания является недостаточное выделение инсулина поджелудочной железой (сахарный диабет типа 1) или недостаточное количество рецепторов инсулина в клетках организма (особенно в мышечных волокнах) – сахарный диабет типа 2. Существует мнение, что одной из причин сахарного диабета типа 2 в пожилом возрасте является уменьшение массы мышц (саркопения) и следовательно, понижение возможности утилизации глюкозы мышцами.

Глюкоза и физическая нагрузка

Концентрация глюкозы в крови во время мышечной деятельности зависит от соотношения между ее потреблением скелетными мышами и выделением печенью.

В состоянии покоя выделению глюкозы из печени способствует гормон глюкагон[1]. Этот гормон обеспечивает расщепление гликогена печени (гликогенолиз) и образование глюкозы из аминокислот (глюконеогенез).

Во время физической нагрузки секреция глюкагона увеличивается. Активность мышц повышает интенсивность выделения адреналина и норадреналина из мозгового слоя надпочечников. Адреналин, норадреналин и глюкагон усиливают гликогенолиз.

Повышение интенсивности физической нагрузки повышает уровень кортизола в крови. Кортизол в свою очередь усиливает катаболизм белков. Это приводит к увеличению количества аминокислот и повышению интенсивности глюконеогенеза, протекающего в печени.

Таким образом глюкагон, адреналин, норадреналин и глюкагон увеличивают количество глюкозы в крови, усиливая процессы гликогенолиза и глюконеогенеза.

На концентрацию глюкозы в крови также влияют гормон роста и гормоны щитовидной железы.

Количество глюкозы, выделяемое печенью, зависит от интенсивности и продолжительности физической нагрузки. С увеличением интенсивности физической нагрузки повышается выделение адреналина и норадреналина. Это заставляет печень выделять все больше глюкозы для мышц. Так, например, концентрация глюкозы в крови после спринта на велосипеде в течение 60 секунд повышается с 5 ммоль/л до 7 ммоль/л (Дж. Х. Уилмор, Д.Л. Костилл, 1997).

Во время физической нагрузки продолжительностью несколько часов интенсивность выделения глюкозы печенью полностью соответствует потребностям скелетных мышц, поэтому уровень глюкозы в крови соответствует ее концентрации в состоянии покоя или немного его превышает (Дж. Х. Уилмор, Д.Л. Костилл, 1997).

После того, как истощатся запасы гликогена в печени, концентрация глюкозы в крови немного снижается. Однако в этот момент увеличивается концентрация глюкагона в крови. Этот гормон вместе с кортизолом усиливают глюконеогенез, стабилизируя уровень глюкозы в крови (Дж. Х. Уилмор, Д.Л. Костилл, 1997).

Литература

  1. Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
  2. Уилмор Дж. Х. Костилл Д.Л. Физиология спорта и двигательной активности.- Киев: Олимпийская литература, 1997.- 504 с.

С уважением, А.В. Самсонова

[1] Глюкагон – гормон. Синтезируется в альфа-клетках поджелудочной железы.

Углеводы — Википедия

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Сахара́  — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных

[1].

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Моносахариды[править | править код]

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральный pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется

альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов

[2].

Дисахариды[править | править код]

Дисахари́ды (от др.-греч. δία ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных

[3].

Олигосахариды[править | править код]

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях

[3].

Полисахариды[править | править код]

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (

декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C

6H10O5)p, а при полном гидролизе — глюкоза[4].

Структура гликогена

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10

5—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы
[2]
. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс

[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида, у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так, целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/л глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(h3O)y+xO2→xCO2+yh3O, ΔH<0.001{\displaystyle {\mathsf {C_{x}(H_{2}O)_{y}+xO_{2}\rightarrow xCO_{2}+yH_{2}O,\ \Delta H<0.001}}}

В зелёных листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2+yh3O→Cx(h3O)y+xO2{\displaystyle {\mathsf {xCO_{2}+yH_{2}O\rightarrow C_{x}(H_{2}O)_{y}+xO_{2}}}}

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, содержит 65% фруктозы и 25-30% глюкозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов[править | править код]

  1. 1 2 3 4 Н. А. Абакумова, Н. Н. Быкова. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7.
  2. 1 2 3 4 5 6 7 8 9 10 11 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8.
  6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4.
  • Углеводы (рус.) (недоступная ссылка). — строение и химические свойства. Дата обращения 1 июня 2009. Архивировано 25 июля 2001 года.
⛭
Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозыКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

Роль гликогена в организме человека при соблюдении диеты, упражнениях и многое другое

rol-glikogena-v-organizme-cheloveka-na-krasnom-fone-napisano-glycogen

Роль гликогена в организме человека в подержании сбалансированного уровня глюкозы в крови путем хранения избыточной глюкозы при повышении уровня. Либо высвобождения глюкозы при снижении уровня.

Каждый раз, когда мы употребляем пищу, содержащую углеводы, происходит процесс расщепления пищи и превращения углеводов в сахар — глюкозу. Когда в организме достаточное количество глюкозы, больше, чем он может использовать за раз, она хранится для дальнейшего использования в форме гликогена.

Из чего состоит гликоген? Он синтезируется из глюкозы, когда уровень глюкозы в крови (то, что мы называем «сахар в крови») высок.

Это позволяет гликогену функционировать как важный «энергетический резервуар». Он обеспечивает организм энергией по мере необходимости в зависимости от таких вещей, как стресс, потребление пищи и физические потребности.

Что такое гликоген?

Гликоген является:

«безвкусным полисахаридом (С6Н10О5)х, что является основной формой, в которой глюкоза хранится в тканях животных, особенно мышцах и тканях печени»

Другими словами, это вещество, которое откладывается в тканях организма как запас углеводов. Исследования показывают, что он функционирует как тип накопления энергии, поскольку он может быть сломан, когда требуется энергия.

nezamenimye-aminokisloty-ryba-yajca-myaso-moloko

В чем разница между глюкозой и гликогеном? Гликоген — это разветвленный полисахарид, который расщепляется на глюкозу. Полисахарид — это углевод, молекулы которого состоят из нескольких связанных между собой молекул сахара.

Его структура состоит из разветвленного полимера глюкозы, состоящего из примерно 8 — 12 единиц глюкозы. Гликогенсинтаза — это фермент, который связывает цепи глюкозы вместе.

После расщепления глюкоза может попасть в гликолитический фосфатный путь или в кровоток.

Какова основная функция гликогена? Он служит легкодоступным источником глюкозы и энергии для тканей, расположенных по всему организму, когда уровень глюкозы в крови низок. Например, из-за голодания или физических упражнений.

У людей и животных, даже микроорганизмы (бактерии и грибы) накапливают гликоген для выработки энергии в период ограниченной доступности питательных веществ.

Интересно, чем крахмал отличается от гликогена? Крахмал является основной формой хранения глюкозы у большинства растений. По сравнению с гликогеном, он имеет меньше ветвей и менее компактен. В целом, крахмал делает для растений то, что гликоген делает для людей.

Как гликоген производится и хранится

Как гликоген превращается в глюкозу?

  • Глюкагон — это пептидный гормон, который выделяется из поджелудочной железы и сигнализирует клеткам печени о расщеплении гликогена.
  • Через гликогенолиз он расщепляется на глюкозо-1-фосфат. Затем он превращается в глюкозу и попадает в кровоток, чтобы обеспечить организм энергией.
  • Другие гормоны в организме, которые также могут стимулировать его расщепление, включают кортизол, адреналин и норэпинефрин. Их часто называют «гормонами стресса».
  • Исследования показывают, что распад и синтез гликогена происходят из-за активности гликогенфосфорилазы. Это фермент, который помогает ему распадаться на более мелкие единицы глюкозы.

Где хранится гликоген? У людей и животных он встречается в основном в мышцах и клетках печени.

polza-taninov-v-vine-tri-prozrachnyx-stakana-s-vinom-v-rukax-u-lyudej

В небольших количествах он также хранится в эритроцитах, лейкоцитах, клетках почек, глиальных клетках и матке у женщин.

Уровень глюкозы в крови повышается после того, когда мы употребляем углеводы. Происходит выброс гормона инсулина, который способствует поглощению глюкозы клетками печени. Когда большое количество глюкозы синтезируется в гликоген и сохраняется в клетках печени, гликоген может составлять до 10% веса печени.

Поскольку у нас в организме больше мышечной массы, чем у печени, больше наших запасов находится в мышечной ткани. Гликоген составляет от 1 до 2 процентов мышечной ткани по весу.

Хотя он может разрушаться в печени и затем высвобождаться в кровоток, этого не происходит с гликогеном в мышцах. Исследования показывают, что мышцы обеспечивают глюкозой только мышечные клетки, помогая питать мышцы, но не другие ткани организма.

Роль гликогена в организме человека и его преимущества

Организм использует гликоген для поддержания гомеостаза, или «стабильного равновесия», которое поддерживается физиологическими процессами.

Основная роль гликогена в организме человека заключается в хранении или высвобождении глюкозы. В последствии она будет использоваться для получения энергии, в зависимости от наших меняющихся энергетических потребностей. Считается, что человек может хранить около 2000 калорий глюкозы в виде гликогена за один раз.

Есть несколько процессов, которые организм использует для поддержания гомеостаза через метаболизм глюкозы. Это:

  • Гликогенез или синтез гликогена. Это описывает превращение глюкозы в гликоген. Гликогенсинтаза является ключевым ферментом, участвующим в гликогенезе.
  • Гликогенолиз или распад гликогена.
rol-glikogena-v-organizme-cheloveka-na-krasnom-fone-napisano-glycogen

Преимущества и роль гликогена в организме человека включают в себя:

  • Служит важным и быстро мобилизуемым источником хранимой глюкозы.
  • Обеспечение запаса глюкозы для тканей организма
  • В мышцах, обеспечивающих энергию или «метаболическое топливо» для гликолиза, вырабатывается 6-фосфат глюкозы. Глюкоза окисляется в мышечных клетках посредством анаэробных и аэробных процессов с образованием молекул аденозинтрифосфата (АТФ). Они необходимы для сокращения мышц
  • Выступая в качестве датчика топлива и регулятора сигнальных путей, участвующих в тренировочной адаптации

В организме человека уровень гликогена может значительно варьироваться в зависимости от питания, физических упражнений, стресса и общего метаболического здоровья.

Он высвобождается печенью по ряду причин в попытке вернуть организм к равновесию. Вот некоторые из причин, по которым он выпущен:

  • Утром после пробуждения
  • В ответ на низкий уровень сахара в крови в отличие от нормального уровня сахара в крови
  • Из-за стресса
  • Чтобы помочь с пищеварительными процессами
dejstvie-kofermenta-nad-na-seroj-poverxnosti-stoit-tyubik-s-dobavkoj-nad-belo-korichnevogo-cveta

Роль гликогена в организме человека при диете

Когда требуется быстрый источник энергии у организма есть возможность расщепить гликоген на глюкозу, чтобы попасть в кровоток. Эта необходимость может возникнуть во время или после тренировки. Скорее всего, это происходит, когда организм не получает достаточного количества глюкозы из пищи. Например, если Вы голодали, чтобы получить пользу от голодания или не ели более нескольких часов.

Истощение гликогена и обезвоживание приведет к снижению веса, хотя и временно.

После тренировок многие эксперты рекомендуют «заправляться» едой или закусками, которые содержат углеводы и белок. Тем самым помогая пополнить запасы гликогена и поддерживать рост мышц. Если Вы занимаетесь примерно один час упражнениями умеренной интенсивности, то рекомендуется восполнение 5–7 г/кг массы тела углеводами плюс белок. Это необходимо, чтобы полностью восстановить мышечный гликоген в течение 24–36 часов.

Каковы некоторые из лучших продуктов гликогена для восстановления своих резервов?

  • Наилучшими вариантами являются необработанные источники углеводов, включая фрукты, крахмалистые овощи, цельные зерна, бобовые и молочные продукты. Употребление продуктов, обеспечивающих достаточным количеством углеводов и калорий приводит к постепенному наращиванию запасов гликогена в мышцах в течение нескольких дней.
  • Аминокислоты, которые образуют белок, также помогают организму использовать гликоген. Например, глицин — это аминокислота, которая также помогает расщеплять и транспортировать питательные вещества, используемые клетками для получения энергии. Было обнаружено, что он помогает предотвратить разрушение белковой ткани, которая формирует мышцы. А также повысить производительность и восстановление мышц.
  • Источники пищи, такие как костный бульон, богатые коллагеном продукты и желатин, содержат глицин и другие аминокислоты. В то время как другие белковые продукты, такие как мясо, рыба, яйца и молочные продукты, также полезны.
polza-yablochnoj-kisloty-ovoshhi-belaya-cvetnaya-kapusta-oranzhevaya-morkov-krasnyj-pomidor-frukty-zelenaya-grozd-vinograda-krasnoe-yabloko-i-klubnika-bordovaya-chereshnya-zhelto-rozovaya-grusha

Роль гликогена в организме человека при занятии спортом

Мышечный гликоген, а также глюкоза в крови и гликоген, хранящийся в печени, помогают снабжать нашу мышечную ткань во время тренировок. Это одна из причин, почему физические упражнения настоятельно рекомендуется для людей с высоким уровнем сахара в крови. Включая людей с симптомами диабета.

«Истощение гликогена» описывает состояние этого гормона, который истощается из мышц, например, из-за энергичных упражнений или голодания.

Чем дольше и интенсивнее Вы будете тренироваться, тем быстрее будут исчерпаны Ваши запасы. Высокоинтенсивные упражнения, такие как спринт или езда на велосипеде, могут быстро снизить запасы в мышечных клетках. В то время как упражнения на выносливость будут делать это медленнее.

После тренировки мышцы должны пополнить свои запасы. Как говорится в статье 2018 года, опубликованной в Nutrition Reviews,

«Способность спортсменов тренироваться день за днем ​​во многом зависит от адекватного восстановления запасов гликогена в мышцах. Это процесс, который требует потребления необходимого количества пищевых углеводов и достаточного времени».

Есть несколько методов, которые спортсмены применяют для использования гликогена таким образом, что поддерживает их работоспособность и восстановление:

  • Они могут загружать углеводы перед соревнованиями или трудными тренировками. Это необходимо для увеличения их способности хранить гликоген и затем при необходимости его использовать.
  • Чтобы предотвратить плохую работу из-за усталости, вызванной истощением гликогена, некоторые спортсмены потребляют углеводы с высоким гликемическим индексом во время тренировок. Это может помочь быстро и легко обеспечить мышцы большим количеством глюкозы, чтобы продолжать тренироваться.

Вам не обязательно употреблять много углеводов, чтобы оставаться под напряжением. Здоровая диета с низким гликемическим индексом также эффективна.

Гликоген является «предпочтительным» источником энергии для организма, но это не единственная форма энергии, которая может быть сохранена. Другая форма — жирные кислоты.

Вот почему некоторые спортсмены могут хорошо тренироваться при соблюдении диеты с низким содержанием углеводов. Например, кетогенная диета. В этом случае мышцы могут использовать жирные кислоты в качестве источника энергии, как только человек «приспосабливается к жиру».

Низкоуглеводные диеты часто способствуют похудению, а также тяжелым физическим нагрузкам. Они работают за счет сокращения запасов гликогена, заставляя организм сжигать жир вместо углеводов для получения энергии.

produkty-s-ellagovoj-kislotoj-krasnaya-klubnika-chernaya-chernika-zelenyj-vinograd-kivi-brokkoli-zheltye-dolki-limona-krasnyj-perec-artishok-korica-korichnevaya-orexi-pekan-funduk

Роль гликогена в организме человека — риски и побочные эффекты

Некоторые люди сталкиваются с излишним накоплением гликогена, хотя это не является распространенным заболеванием. Излишнее накопление возникает, когда человек испытывает «гомеостаз дефектного гликогена» в печени или мышцах.

Эти заболевания включают болезнь Помпе, болезнь Макардла и болезнь Андерсена. Некоторые также считают, что диабет — это заболевание, на которое влияет неправильное накопление гликогена. Поскольку у диабетиков нарушается способность правильно выводить глюкозу из кровотока.

Почему развиваются эти заболевания? Нарушение способности печени и мышц хранить этот гормон может происходить по нескольким причинам, например, из-за:

  • Генетические факторы. Болезнь Помпе вызвана мутациями в гене GAA, Болезнь Макардла вызвана мутацией в гене PYGM. А Болезнь Андерсена вызвана одной мутацией в гене GBE1.
  • Эти заболевания могут возникать на разных этапах жизни и даже быть смертельными, если их не лечить.
  • Гепатомегалия (увеличение печени), гипогликемия и цирроз печени (рубцевание печени) являются другими причинами.

Когда кто-то испытывает дефект гликогена в мышцах, у него может развиться ряд симптомов и нарушений. Примеры включают мышечную боль и усталость, задержку роста, увеличение печени и цирроз печени.

Роль гликогена в организме человека – заключение мысли

  • Что такое гликоген? Это сохраненная форма глюкозы, которая является основным источником энергии для организма.
  • Он состоит из множества связанных молекул глюкозы.
  • Это гормон, который запускает превращение гликогена в глюкозу для высвобождения в кровь
  • Его основная функция заключается в помощи организму поддерживать гомеостаз путем накопления или выделения глюкозы. Причем это зависит от наших потребностей в энергии в любой момент времени.
  • Хранение гликогена происходит главным образом в нашей печени и мышечных клетках. Наша печень разрушается и выпускает гликоген в кровоток, когда необходимо больше энергии, чем мы употребляли из пищи, особенно углеводов.

Поделиться:

Глюкоза и инсулин. Роль в углеводном обмене организма.

Роль глюкозы и инсулина в углеводном обменеДля обеспечения жизнедеятельности человеческому организму необходима энергия, которая вырабатывается за счёт сложного процесса превращения углеводов, в частности, глюкозы. Основным источником поступления в кровь глюкозы является пища, которая содержит такие углеводы, как лактоза, сахароза, крахмал и другие. Как правило, большая часть этих углеводов в процессе пищеварения превращается в глюкозу.

Глюкоза представляет собой простой сахар, состоящий из шести атомов углерода, и является важным энергетическим источником для всего организма и единственным – для головного мозга. В свободном состоянии глюкоза практически не присутствует в пищевых продуктах, однако она входит в состав сахарозы и крахмала, из которых она выделяется в процессе пищеварения, давая организму необходимую энергию.

Входящие в состав пищи углеводы поставляют в организм около 60% энергии. Попав в желудочно-кишечный тракт, сложные углеводы расщепляются ферментами до простых молекул, называемых моносахаридами, которые затем всасываются в кровь. К моносахаридам относятся глюкоза, галактоза и фруктоза. Из всех моносахаридов 80% принадлежит глюкозе, к тому же, большая часть галактозы и фруктозы в процессе пищеварения также превращаются в глюкозу. В итоге, все поступающие с пищей углеводы в ходе метаболизма расщепляются до глюкозы.

Глюкоза может служить источником энергии, только функционируя внутри клетки. Каждая клетка организма запасает энергию посредством метаболического окисления глюкозы до углекислого газа и воды. Под воздействием этого процесса аккумулируемая в молекуле глюкозы энергия используется для образования энергоёмкого соединения – молекулы АТФ. Заключённая в молекуле АТФ энергия в последующем может использоваться организмом для осуществления химических внутриклеточных реакций.

Проникнув внутрь клеток, глюкоза берёт на себя центральную метаболическую роль, снабжая энергией многие биохимические реакции, необходимые для осуществления клеточных функций. Головной мозг, в отличие от других тканей, не способен синтезировать глюкозу и обеспечение его энергетических нужд полностью зависит от поступления глюкозы из крови. Чтобы головной мозг функционировал нормально, уровень глюкозы в крови должен составлять не менее 3.0 ммоль/л. Однако, он не должен быть слишком высоким. Поскольку глюкоза является осмотически активным веществом, то при возрастании её уровня в крови в соответствии с законами осмоса из тканей в кровь начинает поступать вода, а почки начинают активно выводить глюкозу, если её уровень достигает 10 ммоль/л. В результате организм лишается глюкозы – главного источника энергии.

Поговорим о том, как же глюкоза проникает внутрь клеток. В результате пищеварения и сложного обмена углеводов в крови оказывается повышенное содержание глюкозы. Это служит своеобразным сигналом поджелудочной железе для выработки ферментов и гормонов.

Клетки поджелудочной железы имеют разное строение и выполняют разные функции. Существуют так называемые бета-клетки, которые синтезируют гормон инсулин. При повышении в крови уровня глюкозы, инсулин выбрасывается в кровь, открывая ей своеобразный шлюз для попадания внутрь клеток, где в последующем она сможет использоваться организмом, как источник энергии. Но клетки организма нуждаются в постоянной энергетической подпитке, а не только во время еды, поэтому нормальная секреция инсулина у здорового человека идёт постоянно с показателем 0.5-1 в час.

Прием пищи стимулирует дополнительный выброс инсулина. Причём, это происходит практически моментально, что не приводит к повышению уровня сахара в крови. Между приемами пищи организму также необходим энергетический материал в виде глюкозы, и для этого печень резервирует необходимое количество углеводов, переработанных в гликоген, и по мере необходимости преобразует его обратно в глюкозу.

Одной из функций поджелудочной железы является регулирование уровня глюкозы в крови. Для этой цели в её клетках вырабатываются два гормона – антагониста: инсулин и глюкагон. То есть, если глюкозы в крови много – инсулин спешить провести её внутрь клеток, а энергетический излишек с помощью печени зарезервировать в гликоген. Если глюкозы в крови мало – глюкагон блокирует выработку гликогена, начиная активно перерабатывать его обратно в глюкозу, чтобы обеспечить необходимое энергетические питание организма. Таким образом, благодаря нормальной работе поджелудочной железы, поддержание уровня глюкозы в крови подвергается строгому контролю.

Кроме регулирования углеводного обмена, роль инсулина в нормальной работе организма невозможно переоценить. Инсулин – единственный гормон, помогающий поступившей в кровь глюкозе пройти печёночные, жировые и мышечные клетки. Если инсулина недостаточно, то происходит, приблизительно, то же, что может произойти с автомобилем; для запуска процесса сгорания топлива необходимо включить зажигание, но оно не работает, и топливо заливает двигатель. Функцию зажигания в организме выполняет именно инсулин. Если его не хватает, глюкоза не сгорает, не перерабатывается в энергию, а накапливается в крови и нарушает работу всего организма. Возникает инсулиновый голод среди сахарного изобилия.

Кроме того, инсулин помогает печени в образовании резервного энергетического запаса гликогена, играет огромную роль в обеспечении энергетического баланса организма, препятствуя переходу аминокислот в сахара, улучшает синтез белков, способствует преобразованию углеводов в жиры, то есть участвует практически во всех жизненно важных процессах. Если же, после переработки глюкозы и отложения гликогена в печени, показатель уровня сахара в крови остаётся высоким, то его избыток жировые клетки превращают в жир, что, соответственно, приводит к ожирению.

Однако, при длительном, неправильно составленном рационе питания, с большим количеством «быстрых» углеводов и рафинированных продуктов, работа поджелудочной железы может нарушиться. Это грозит развитием такого серьёзного заболевания, как сахарный диабет. Если клетки не могут усвоить глюкозу, поступившую в кровь при переваривании пищи, то её уровень постепенно повышается. Существует два типа сахарного диабета. I тип (инсулинозависимый) требует введения в организм инсулина извне, так как поджелудочная железа практически не вырабатывает инсулин. При II типе (инсулиннезависимом) вырабатывается достаточное количество инсулина, но он не работает должным образом. Поскольку клетки не получают необходимого количества энергии, возникает слабость и быстрое переутомление.

Если показатель уровня сахара в крови выше 10 ммоль/л, то к его выводу из организма подключаются почки. Поскольку увеличивается мочеотделение, появляется чувство постоянной жажды. В конце концов, организм переключается на другие виды горючего: жиры и белки. Но их расщепление происходит тоже под воздействием инсулина, которого катастрофически не хватает, поэтому жиры сгорают не до конца, что приводит к отравлению всего организма и может спровоцировать кому.

Поэтому, чтобы сохранить здоровье, необходимо тщательно следить за качеством рациона питания и, прежде всего, углеводов. Существует такое понятие, как гликемический индекс (ГИ) продуктов. Он показывает, с какой скоростью в организме расщепляется и преобразуется в глюкозу тот или иной продукт. При этом, чем быстрее расщепление, тем выше гликемический индекс. Так называемые «быстрые» углеводы заставляют поджелудочную железу реагировать выбросом рекордного количества инсулина. Употребление «быстрых» углеводов всегда ведёт к развитию ожирения, поскольку излишек глюкозы организм непременно отложит про запас в виде жира. Совсем другое дело обстоит с «медленными» углеводами, которые постепенно расщепляясь, позволяют инсулину равномерно проводить глюкозу в клетки, обеспечивая долговременное чувство сытости и необходимую энергетическую подпитку.

Таким образом, процесс обмена углеводов идёт по двум направлениям: преобразование пищевых веществ в энергию и перераспределение их избытка в энергетические резервы для подпитки между приемами пищи. Если энергетический резерв полон, а в крови ещё присутствует глюкоза, то организм её откладывает в виде жирового запаса. Поэтому очень важно подпитывать организм энергией, употребляя «медленные» углеводы. При правильной работе пищеварительной системы и поджелудочной железы, показатель содержания сахара в крови всегда будет оставаться в норме, способствуя сохранению здоровья и активного образа жизни.

Автор: Арина Михайлова

Глюкоза и гликоген — сходства и различия — Рамблер/женский

Гликоген и глюкоза — это две разные формы сахаров, необходимых телу человека в качестве источника энергии. Глюкоза используется телом для немедленной переработки в энергию, гликоген используется для хранения энергии. Запасы гликогена дислоцируются в мышцах и печени, организм использует его по мере необходимости. Тело человека устроено так, что оно не может использовать гликоген в качестве прямого источника энергии, также тело не может хранить глюкозу.

Блок похожие статьи

Когда ты питаешься сбалансировано, употребляя нормальное количество белков и углеводов, твой организм преобразует углеводы и часть белков в энергетические запасы. Организм стремится постоянно поддерживать стабильный уровень глюкозы в крови. Если концентрация глюкозы в крови становится слишком высокой, поджелудочная железа производит гормон инсулин для преобразования глюкозы. Часть глюкозы превращается в гликоген, он хранится в мышечных тканях и печени для последующего использования. В обратной ситуации, когда уровень глюкозы в крови становится слишком низким, поджелудочная железа производит глюкагон, этот пептидный гормон выполняет противоположную инсулину роль. Глюкагон стимулирует печень преобразовать некоторое количество гликогена в глюкозу, после чего глюкоза поступает в кровоток. Глюкагон воздействует только на запасы в печени, гликоген в мышечных тканях не может вновь стать глюкозой, эти запасы могут быть использованы только мышцами. Печень взрослого человека в состоянии накопить от 90 до 110 граммов гликогена, такого запаса хватит на 3-4 часа активности. Когда запасы гликогена полны, но уровень глюкозы в крови по-прежнему высок, печень начинает преобразовывать глюкозу в жировые запасы. Такое происходит при неумеренном поглощении пищи, избытке простых сахаров в питании. Преобразование глюкозы в жировые запасы естественно, телу необходимо сохранять хотя бы немного жира для поддержания жизнедеятельности. Если ты пропустишь прием пищи или проголодаешься между приемами пищи, то тело начнет использовать в качестве источника гликоген из печени. Примерно через три часа весь гликоген из печени будет исчерпан, тогда тело начнет черпать энергию из жировых запасов. Организм здорового человека будет постоянно пополнять запасы гликогена из глюкозы, а также небольшое количество жировых запасов. При правильном функционировании организма и правильном питании жировых запасов не станет больше, чем требуется. Читать далее

Другие материалы по теме:

3 простых шага к избавлению от жира

5 способов избежать переедания за ужином

Эффект плато при похудении

Видео дня. Как магазины облапошивают покупателей

Читайте также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *