1.2 Характеристика групп крови системы авo и резус-фактор
Введение
Группы крови человека являются одним из основных объектов изучения популяционной и молекулярной генетики; они в какой-то степени характеризуют молекулярную эволюцию и могут быть использованы для генетического картирования и выяснения вопросов геногеографии.
Групповая принадлежность внутрипопуляционного полиморфизма определяется с помощью реакции агглютинации при помощи стандартных гемагглютинирующих сывороток. Систему группы крови ABO составляют два групповых эритроцитарных агглютиногена (А и В) и два соответствующих антитела — агглютинины плазмы альфа (анти-А) и бета (анти-В). Различные сочетания антигенов и антител образуют 4 группы крови изучение которых позволит нам увидеть и вычислить закономерности распределения генов.
Генетическое изучение населения очень трудоёмко, требует больших затрат времени и средств, поэтому геногеографические данные накапливаются довольно медленно. Но, если на основе этих, пусть весьма неполных, данных, руководствуясь определенными генетически обоснованными правилами, построить карту географического распределения генов, то о многих ещё не изученных популяциях мы получим предварительную генетическую информацию, носителем которой является геногеографическая карта.
Для успешного изучения этого вопроса нужна новая информация о наследовании генетической структуры населения различных этнических групп, а также изучение индивидуальных биологических свойств и популяционных генетических структур.
В связи с выше сказанным изучением вопроса о распространении и частоте встречаемости групп крови системы ABO в различных этнических группах (белорусы, украинцы, корейцы, армяне) среди населения г. Гомеля представляет большую научную значимость, так как строгое постоянство наследуемости групповых признаков ABO позволит определить распределение фенотипов и их аллелей и установить таким образом генетическую структуру популяции г. Гомеля по генам, контролирующим группы крови.
Целью работы явилось изучение генетической структуры популяций и выявление закономерностей распределения генов групп крови ABO у взрослых жителей разных этнических групп, проживающих на территории города Гомеля и его районов.
Для достижения цели в курсовой работе были поставлены следующие задачи:
1. Изучение и анализ литературных данных по теме исследований.
2. Сбор и анализ материала по данной теме исследования, которым является группа крови и резус фактор среди населения, проживающего на территории г. Гомеля, а так же прилежащих к нему территорий.
3. Математическая обработка полученных данных.
4. Определение генетической структуры и выявление закономерностей распределения генов групп крови ABO у взрослых жителей разных этнических групп г. Гомеля.
1. Обзор литературы
1.1 Открытие групп крови
С незапамятных времён люди знали, что большая потеря крови приводит к смерти. В XVI в. врачи впервые попытались восполнить кровопотерю у раненых солдат, переливая им кровь от здорового донора. Сразу же обнаружилось, что результат этой операции совершенно не предсказуем: в одних случаях пациенты поправлялись, в других умирали. Таким образом, вплоть до XX в. кровопотери были основной причиной смерти рожениц и раненых солдат.
В 1888 г. в Дерптском университете (ныне Тарту, Эстония) учёный Г. Штильмарк сделал открытие, давшее ключ к многовековой загадке. Он изучал токсическое действие касторового масла. Смешав в пробирке касторовое масло с кровью, учёный заметил, что красные кровяные тельца склеились между собой, как при свёртывании крови. Продолжая исследования, Штильмарк обнаружил, что касторовое масло вызывает агглютинацию крови одних биологических видов и не влияет на другие, что агглютинации может подвергаться не только кровь, но и клетки печени, кожи и белые кровяные тельца. Явление, открытое Штильмарком, долгое время именовалось «токсичным началом» ядовитых растений. Лишь полвека спустя учёные выделили из касторового масла белок, получивший название рицин. Открытие агглютинации стало важным шагом в медицинской науке.
Исследования Штильмарка положили начало целому ряду аналогичных работ, проведённых коллегами Штильмарка по университету. Работы по изучению растительных токсинов дали мощный толчок в развитии зарождающейся науки – иммунологии. В это же время проводятся работы по исследованию действия токсинов животного происхождения, выделенных из яда различных змей.
Многочисленные статьи по исследованию токсинов сразу же привлекли внимание немецкого бактериолога П. Эрлиха. Эрлих понял, что в исследовании иммунологических проблем можно заменить бактериальные токсины растительными – абрином и рицином. С помощью этих токсинов Эрлих провёл ряд экспериментов. В своих экспериментах он продемонстрировал специфичность действия белков, содержащихся в сыворотке крови (впоследствии эти белки получили название антител) при введении абрина и рицина. Анти-абрин нейтрализовал действие абрина, но не влиял на рицин, и наоборот. Специфичность действия антител и индуцированная толерантность до сих пор остаются краеугольными камнями иммунологии.
Открытие Эрлиха о специфичности действия антител проложило путь к открытию групп крови АВО двадцатью годами позже, когда учёные выявили динамику процесса, впоследствии получившего название реакция «антиген-антитело».
В 1900 г. К. Ландштейнер, смешивая с плазмой крови одних людей эритроциты других людей, обратил внимание, что часто происходит их склеивание (гемагглютинация). В дальнейшем он выяснил, что в норме кровь людей по своим особенностям неидентична и может быть разделена на три группы, которые австрийский учёный обозначил буквами А, В и С. Вскоре была открыта и четвёртая группа крови АВ.
В 1907 г. Я. Янский вновь открыл четыре основные группы крови человека, обозначив их цифрами I, II, III, IV.
Благодаря этим открытиям впервые в истории врачи получили возможность переливать кровь пациентам, не опасаясь непредсказуемости результата. Открытие Ландштейнера, спасшее огромное количество жизней, считается одним из наиболее значимых открытий в области медицины.
В 1930 г. Ландштейнер стал лауреатом Нобелевской премии. В 1946 г. Ландштейнер совместно с Филиппом Левином и Александром Вайнером сделал ещё одно открытие – выявил резус-фактор, раскрыв причину осложнений течения беременности при резус-конфликте матери и плода.
Открытие Ландштейнера имело решающее значение для разработки методики переливания крови, но учёный не остановился на этом и продолжал изучение реакций крови, вступив на совершенно неисследованную территорию. Соединяя данные экспериментов Штильмарка по агглютинации и Эрлиха – по иммунологии с результатами собственных исследований в области групп крови, он начал проводить эксперименты по воздействию различных веществ на кровяные клетки. В 1908 г. Ландштейнер обнаружил, что незначительное количество агглютинина, выделенного из чечевицы, вызывает агглютинацию кровяных клеток кролика, но даже большие количества этого же вещества никак не влияют на кровь голубя. К 1914 г. труды учёного о связи между действием веществ и группами крови были готовы к публикации, но началась первая мировая война, и материалы увидели свет лишь в 1933 году.
В 1949 г. Уильям Бойд, сотрудник медицинской школы Бостонского университета, выявил специфичность действия ряда лектинов на кровяные клетки различных групп, сворачивавших кровь только одной группы. В частности, выделенный из лимской фасоли агглютинин вызывал агглютинацию только кровяных клеток группы А и не влиял на кровь групп В и О. Его действие основано на присоединении молекулы агглютинина к молекуле сахара, находящейся на поверхности кровяных клеток. Агглютинины подобного действия получили название лектины, отражающее избирательность их действия. Лектин реагирует лишь с определёнными молекулами сахаров – совсем как ключ, что подходит лишь к одному замку.
Группы крови – иммунногенетические особенности крови теплокровных животных и человека, которые характерны для особей одного вида. Для человека характерны четыре группы крови, которые имеют свойственное им строение.
Еще в 1901 году Карл Ландштейнер наблюдал, что при смешивании крови разных людей в одних случаях происходило склеивание (агглютинация) эритроцитов, в других — она отсутствовала. Дальнейшие его исследования, а также Я. Янского позволили установить группы крови, которые отличаются друг от друга по наличию или отсутствию в эритроцитах антигенов (агглютиногенов) и антител (агглютининов) в плазме. Агглютиногены эритроцитов (А и В), представляют собой полисахаридно-аминокислотые комплексы. С ними взаимодействуют специфические антитела (агглютинины и ), растворенные в плазме, являющиеся по своей природе -глобулинами. Они имеют 2 центра связывания, что обеспечивает возможность образования мостика между двумя эритроцитами и таким образом образовывать конгломераты (агглютинаты) эритроцитов.
В норме у каждого человека отсутствуют агглютинины к соответствующим агглютиногенам, т. е. у каждого человека существует индивидуальный набор эритроцитарных агглютиногенов.
При переливании крови подбирают такую кровь, чтобы избежать встречи одноименных агглютиногенов донора с агглютининами реципиента. Агглютинины донора в расчет не принимаются, так как происходит разведение (разбавление) их кровью реципиента и они не могут вызвать агглютинации его эритроцитов (при переливании небольших количеств крови 200-500 мл). При переливании используют только одногруппную кровь. При ее отсутствии в экстренных случаях переливание крови проводят по схеме совместимости различных групп крови.
Групповая принадлежность определяется с применением стандартных сывороток I, II и III групп путем смешивания капли каждой из них с каплей исследуемой крови. По наличию и отсутствию агглютинации в них определяют групповую принадлежность. Для избежания ошибок определение групповой принадлежности проводят при температуре в помещении 15-25 0 С. При температуре выше 25 0 С реакция агглютинации замедляется, а при температуре ниже 15 0 С возможна холодовая агглютинация. Капля вносимой в сыворотку крови должна быть в 3-5 раз меньше объема капли сыворотки, чтобы не снизить титр содержащихся в них агглютининов. В случае получения нечетких результатов определение групповой принадлежности крови проводят повторно с сыворотками другой серии. При получении повторного сомнительного результата проводят прямую и обратную пробы со стандартными сыворотками и стандартными эритроцитами.
Эритроциты донора смешивают на стекле с плазмой или сывороткой реципиента при 37С. Это так называемая «прямая» проба. Ее цель — определить наличие в сыворотке реципиента антител к эритроцитам донора. Если агглютинации нет, то проводят «обратную» пробу.
Эритроциты реципиента помещают в сыворотку донора. Цель — выявление в сыворотке донора антител к эритроцитам реципиента (обратная проба).
Проводят биопробу. Вначале струйно внутривенно вводят 10-15 мл донорской крови и в течение 3-5 мин наблюдают нет ли каких либо клинических проявлений реакций или осложнений (учащение ЧСС, дыхания, одышка, затрудненное дыхание, гиперемия лица и др.). Такое введение повторяют трижды. При отсутствии каких-либо осложнений вводят остальную часть крови.
Существуют разновидности агглютиногена А: А0, А1, А2, А3, А4, А5, Аz и др. Из них самым сильным является А1. Поэтому при слабоактивных сыворотках, содержащих агглютинин , кровь таких лиц может быть ошибочно отнесена к I (0) группе.
У людей с I(0) группой крови в плазме содержатся анти-А и анти-В иммунные агглютинины, т. е. и . Переливание такой крови в больших количествах недопустимо, так как в этих случаях аглютинины донора уже не разводятся плазмой реципиента и они могут вызвать агглютинацию эритроцитов реципиента. Кроме того, у лиц с I(0) группой крови на поверхности мембран эритроцитов имеется антиген Н, который доступен для взаимодействия с анти-Н-антителами, довольно часто встречающимися в плазме крови II(A) и IV(АВ) групп и несколько реже III(В) группы. В этих случаях переливание крови I(0) группы лицам, имеющим другие группы крови, может привести к гемотрансфузионным осложнениям. Поэтому универсальных доноров называют опасными универсальными донорами.
Наличие Н-антигена на поверхности мембран эритроцитов послужило основанием обозначать систему АВО как АВН.
Агглютиноген В также существует в нескольких вариантах.
Распространенность людей с группами крови: I(0) — 40-50 % , II(А) — 30 — 40 %, III(В) — 10-20 %, IV(АВ) — 5 %.
География: 40 % людей Центральной Европы имеют группу крови II(А), 90 % Северной Америки — I (0), более 20 % Центральной Азии — III(В). I (0) группа крови имеется у всех народов, II(А) — преобладает у жителей Европы, Ближнего Востока, Китая, Японии. Людей с III(В) группой крови меньше всех, с IV(АВ) — преобладают жители Индии, Центральной Азии, долины Нила. III(В) группы крови нет у аборигенов Америки и Австралии, II(А) — нет у Южно-африканских народов. 100 % индейцев Южной Америки имеют I(0) группу крови.
Резус-фактор (Rh) — система группы крови включающая 6 основных антигенов C, D, E, c, d, e. Из них самым активным является D (обладает повышенными антигенными свойствами). При наличии этого антигена человек является резус-положительным, при его отсутствии – резус-отрицательным.
Определение резус-фактора заключается в выявлении в эритроцитах крови человека наличия или отсутствия особого белка (антигена), названного резус-фактором. Наибольшей активностью обладает антиген D, поэтому именно его определение имеет важное значение. Группы крови, в которых содержится антиген Rh (D), условно принято считать резус-положительными (Rh+), а группы крови, не содержащие антигена Rh(D), — резус-отрицательными (Rh-). Для определения резус-фактора в настоящее время используют стандартную сыворотку, содержащую определенный титр агглютининов или цоликлон анти-D.
Установлено, что у 85 % людей в крови содержится данный фактор , у 15 % он отсутствует. Людей, в крови которых имеется резус-фактор, принято называть резус-положительными (Rh+ ), а при его отсутствии — резус-отрицательными (Rh _).
Вопрос № 40. Иммунобиологические свойства крови. Группы крови человека по системе аво. Характеристика агглютиногенов и агглютининов крови.
Иммунобиологические свойства крови. Группы крови человека по системе АВО. Непосредственное отношение к медицинской антропологии имеют иммунобиологические свойства организма человека, которые выработались в процессе антропогенеза и стойко передавались потомству по законам наследственности. Одним из проявлений иммунобиологических свойств организма являются свойства крови, позволяющие отнести людей к той или иной группе. Группы крови, в числе трех, были открыты в 1900 году австрийским ученым Карлом Ландштейнером (1868 — 1943), профессором патологической анатомии Венского университета. В 20-е годы прошлого века он переехал в США и работал в Рокфеллеровском институте в Нью-Йорке, а в 1930 году был удостоен за открытие групп крови Нобелевской премии. Несколько позже была открыта четвертая группа крови.
Значение групповых свойств крови в антропологии связано с тем, что, передаваясь по законам наследственности, они позволяют проследить родственные связи этнотерриториальных групп и пути их миграции. В клинической медицине знание групп крови необходимо при ее переливании, так как переливание крови несовместимой групповой принадлежности приводит к тяжелым осложнениям и может иметь летальный исход. Распределение групп крови в различных этнотерриториальных группах населения учитывается при заготовках крови на случаи стихийных бедствий, террористических актов и вооруженных конфликтов. В судебной медицине определение групп крови используется для идентификации личности и определения возможности отцовства.
Выделение групп крови основано на том, что в эритроцитах содержатся агглютиногены, которые обозначаются латинскими буквами А и В, а в сыворотке крови — агглютинины, обозначаемые греческими буквами α и β. При воздействии агглютининов на эритроциты с несоответствующими агглютиногенами происходит склеивание эритроцитов и выпадение их в осадок, то есть агглютинация.
Современную классификацию четырех групп крови обосновали в 1910 году Дюнкерн и Гиршфельд.
Согласно этой классификации даются следующие обозначения групп крови:
I – 0αβ,
II – Aβ;
III – Bα;
IV – AB00.
Во время Первой мировой войны выяснилось, что у различных народов существует неодинаковое соотношение групп крови. Этот факт вызвал огромное количество исследований во всех странах мира и положил начало особому научному направлению — серологической антропологии, которая изучает закономерности распределения групп крови в человечестве.
В европейской части России распределение населения по группам крови следующее:
I (0) — 32-36%,
II (А) — 36-40%.
III (В) — 20-24%,
IV (АВ) — 7-9%.
Частота группы 0 в Европе увеличивается с севера на юг, группы А — с юга на север, а частота группы В возрастает с запада на восток. В азиатских регионах России и странах Азии частота группы В наиболее высокая.
В 1927 году Ландштейнер и Левин открыли факторы крови МN и Р, независимые от факторов А и В. Они также неравномерно распределены в различных этнических группах. Эти факторы не играют существенной роли при переливаниях крови. В настоящее время выделяются системы изоантигенов эритроцитов человека Lu, Le, K, Dt, А и другие.
Большое практическое значение приобрел резус-фактор (Rh), выделенный в 1940 году К. Ландштейнером и А. Винером при инъекции кроликам крови макаки-резус (Macacus rhesus). Этот фактор особенно важен при беременности. Он является положительным у 85% населения и, как и другие факторы крови, передается по наследству. В случае, когда резус-положительный фактор отца встречается с резус-отрицательным фактором матери, плод, как правило, имеет резус-положительный фактор и возникает конфликт между ним и резус-отрицательным фактором матери. Вследствие этого у ребенка развивается гемолитическая желтуха, а также может произойти самопроизвольный аборт.
Отмечается связь факторов крови с морфологическими, биохимическими, физиологическими показателями, а также с продолжительностью жизни. Так, у долгожителей встречаемость группы крови 0 выше, чем в других возрастных группах. Частота носителей крови групп. В ниже у астеников и выше у представителей мускульного типа телосложения. У девушек с группой крови АВ наблюдается отставание по длине тела и более позднее наступление менархе. У носителей группы крови А более низок уровень холестерина в плазме крови. Уровень половых гормонов у мужчин минимален при группе крови 0 и максимален при группе крови В. При группе крови 0 отмечается более высокое артериальное давление.
Характеристика агглютиногенов и агглютитнинов в крови. В мембрану эритроцитов встроен целый ряд специфических полисахаридно-аминокислотных комплексов, обладающих антигенными свойствами. Эти комплексы называются агглютиногенами (гемагглютиногенами). С ними реагируют специфические антитела, растворенные в плазме, принадлежащие к фракции гамма-глобулинов — агглютинины (изогеммагглютинины). Предполагают, что при реакции антиген — антитело молекула антитела, обладающая двумя центрами связывания, образует мостик между двумя эритроцитами, каждый из которых в свою очередь связывается с другими эритроцитами, в результате чего происходит их склеивание. В норме в крови нет агглютининов к собственным эритроцитам.
Агглютинины обнаружены у беспозвоночных, растений и позвоночных животных — это так называемые лектины. В сыворотке животных они выступают в качестве опсонизирующих факторов. Большинство работ, в которых изучали структуру и функцию агглютининов, выполнено с использованием эритроцитов позвоночных животных. Отсюда их условное название — гемагглютинины. Общим свойством агглютининов является их способность образовывать нековалентную связь с углеводными компонентами клеточной поверхности.
P. S. Сюда же нужно нарисовать таблицу по агглютиногенам и агглютитнинам, которую мы сделали в домашнем задании по занятию № 8.
Механизмы генетического определения групп крови по системе аво. Значение в медицинской экспертизе закономерностей наследования групп крови.
Система групп крови ABO — это основная система групп крови, которая используется при переливании крови у людей. Ассоциированные анти-А и анти-В-антитела (иммуноглобулины), обычно относятся к типу IgM, которые, как правило, образуются в первые годы жизни в процессе сенситизации к веществам, которые находятся вокруг, в основном таких, как продукты питания, бактерии и вирусы. Система групп крови ABO также присутствует у некоторых животных, например, у обезьян (шимпанзе, бонобо и горилл).
Наследование групп крови системы АВО. В системе АВО синтез агглютиногенов и агглютининов определяется аллелями гена I:I0, IA, IB. Ген I контролирует и образование антигенов, и образование антител. При этом наблюдается полное доминирование аллелей IA и IB над аллелем I0, но совместное доминирование (кодоминирование) аллелейIА и IB. Из-за кодоминирования наследование групп крови системы АВО происходит сложным образом. Например, если мать гетерозиготна по II группе, крови (генотип IAI0), а отец гетерозиготен по III группе крови (генотип IBI0), то в их потомстве с равной вероятностью может родиться ребенок с любой группой крови. Если у матери I группа крови (генотип I0I0), а у отца IV группа крови (генотип IАIB), то в их потомстве с равной вероятностью может родиться ребенок или со II (генотип IAI0), или с III (генотип IBI0) группой крови (но не с I, и не с IV).
Групповая несовместимость: При беременности может возникнуть не только резус-конфликт, но и конфликт по группам крови. Если плод имеет антиген, которого нет у матери, она может вырабатывать против него антитела: антиА, антиВ. Конфликт может возникнуть если плод имеет II группу крови, а мать I или III; плод III, а мать I или II; плод IV, а мать любую другую. Нужно проверять наличие групповых антител во всех парах, где у мужчины и женщины разные группы крови, за исключением случаев, когда у мужчины первая группа.
Генотипы | Антигены (агглютиногены) | Антитела (агглютинины) | Группы крови (фенотипы) |
I 0 I 0 | Нет | α,β | I (0) |
I A I A, I A I 0 | А | β | II (A) |
I B I B, I B I 0 | В | α | III (B) |
I A I B | А, В | нет | IV (AB) |
Наследование групп крови в системе mn
В 1927 году К. Ландштейнер и П. Левин обнаружили, что при введении кроликам красных кровяных телец человека у них вырабатываются антитела к антигенам человеческих клеток. Исследуя антитела к кровяным тельцам разных людей, Ландштейнер и Левин опознали два типа антител, которые назвали М и N. Кровяные клетки типа М вызывали у кроликов производство антител М, а клетки типа N — антител типа N. Выяснилось, что каждый человек имеет кровь типа М, типа N или типа MN — смести антигенов М и N.
Это значит, что люди с кровью типа М или N — гомозиготы по разным аллелям одного гена, а люди с кровью типа MN — гетерозиготы по обоим выраженным аллелям. Ген этого признака назван L в честь Ландштейнера; его два аллеля обозначаются как LM и LN. Эти аллели кодоминантны, то есть в гетерозиготах LM и LN они выражены в равной степени. Модель объясняет три вышеописанные схемы наследования. Кроме того, если родители гетерозиготы, то каждый из них образует половину гамет LM и половину гамет LN, которые, объединяясь, дают LMN.
1. Наследование групп крови, системы аво и резус-фактора. Резус-конфликт.
2. Рецепторы поверхностного аппарата клеток. Транспорт веществ через мембраны. Мембранный потенциал, градиент концентрации, диффузия, осмос.
3. Жизненный цикл у круглых червей. Чередование хозяев и феномен смены
Промежуточные и основные хозяева. Понятие о геогельминтах, примеры.
Ответ 1. В начале XX столетия К. Ландштейнер и Я. Янский создали учение о группах крови, позволяющее безошибочно и безопасно возмещать кровопотерю у одного человека (реципиента) кровью другого(донора).
Выяснилось, что в мембранах эритроцитов содержатся особые вещества, обладающие антигенными свойствами, — агглютиногены. С ними могут реагировать растворенные в плазме специфические антитела, относящиеся к фракции глобулинов, — агглютинины. При реакции антиген — антитело между несколькими эритроцитами образуются мостики, и они слипаются.
Наиболее распространена система подразделения крови на 4 группы.
Агглютиногены на эритроцитах | Агглютинины плазмы | |
Группа крови | ||
1(0) II (А) III (В) IV (АВ) | отсутствуют (0) А В А и В | α и β β α отсутствуют (0) |
Группа крови | ||||
1(0) | II (А) | III (В) | IV (АВ) | |
Гены, обуславлива ющие антигены | J0 | JA | JB | JA JB |
Генотипы | J0 J0 | JA J0, JA JA | JB J0, JB JB | JA JB |
Около 85% населения Европы имеет в эритроцитах антиген Rh и образует группу Rh -положителъных индивидуумов. Остальные люди из европейской популяции лишены этого антигена и являются Rh -отрицательными. Синтез антигена Rh контролируется доминантным аллелем D и происходит у лиц с генотипами DD и Dd. Резус-отрицательные люди являются рецессивными гомозиготами (dd). При беременности Rh -отрицательной женщины (dd) Rh -положительным плодом (мужчина DD или Dd, плод Dd) при нарушении целостности плаценты в родах Rh -положительные эритроциты плода проникают в организм матери и иммунизируют его. При последующей беременности Rh -положительным плодом (Dd) анти- Rh -антитела проникают через плаценту в организм плода и разрушают его эритроциты. Развивается гемолитическая болезнь новорожденного. Ведущим ее симптомом является тяжелая анемия.
Ответ 2. Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток система поверхностного аппарата. Она представляет собой тончайшую (10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов. Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.
Важнейшим свойством мембраны является избирательная проницаемость. Это означает, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Плазматическая мембрана функционирует как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.
Существует несколько механизмов транспорта веществ через мембрану.
Диффузия — проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ осуществляется при участии белков мембраны, в которых имеются молекулярные поры (вода, ионы), либо при участии липидной фазы (для жирорастворимых веществ).
Облегченная диффузия — специальные мембранные белки-пеносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану.
Активный транспорт. Этот механизм сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Nа+/К+-насос в клетках животных, активно выкачивающий ионы Na+ наружу, поглощая при этом ионы К+. Благодаря этому в клетке поддерживается большая концентрация К+ и меньшая Nа+, чем в окружающей среде. На этот процесс затрачивается энергия АТФ.
В результате активного транспорта с помощью мембранного насоса происходит также регуляция в клетке концентрации Мg2+ и Са2+.
Макромолекулы, такие, как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит посредством эндоцитоза. При эндоцитозе определенный участок плазмалеммы захватывает внеклеточный материал, заключая его в мембранную вакуоль, возникшую за счет впячивания мембраны. Эндоцитоз разделяют на фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости). Процесс, обратный эндоцитозу, — экзоцитоз (экзо — наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли, или пузырьки.
Ответ 3. Совокупность всех стадий онтогенеза паразита и путей передачи его от одного хозяина к другому называют его жизненным циклом. Личинки могут вести как свободный, так и паразитический образ жизни. Хозяин, в котором обитают личинки паразита, носит название промежуточного. Значение промежуточных хозяев в циклах развития паразитов очень велико: они являются источниками заражения окончательных хозяев, часто выполняют расселительные функции, а иногда обеспечивают выживание популяций паразита в случае временного исчезновения окончательных хозяев.
Иногда в цикле развития паразита последовательно сменяются два, три промежуточных хозяина и даже больше. Хозяина, в котором развивается и размножается половым путем половозрелая стадия паразита, называют окончательным или дефинитивным. Заражение его осуществляется либо при поедании промежуточного хозяина, либо при контакте с последним в одной среде обитания.
Выделяют также понятие «резервуар паразита», или «резервуарный хозяин». Это такой хозяин, в организме которого возбудитель заболевания может жить долго, накапливаясь, размножаясь и расселяясь по окружающей территории.
Строение представителей класса круглых червей в основном соответствует характеристике типа в целом. Круглые черви способны жить без кислорода, обходясь гликолизом в процессе энергетического обмена. Адаптациями к обитанию в хозяине являются развитая половая система и у некоторых форм — органы фиксации, а также усложнение циклов развития с участием в ряде случаев промежуточных хозяев. Болезни, вызываемые круглыми червями, называют нематодозами
Круглых червей, сохранивших связь с внешней средой, яйца или личинки которых развиваются в почве, называют геогельминтами.
У этих червей яйца или личинки обязательно развиваются в поверхностных слоях почвы при доступе кислорода и достаточной влажности. Геогельминты обитают в просвете кишки и размножаются яйцами, которые выводятся с фекалиями и развиваются далее в почве. Они либо сами через определенное время становятся инвазионными, либо из них развиваются личинки, ведущие некоторое время свободный образ жизни и позже становящиеся инвазионными. Геогельминты, поражающие человека, не могут паразитировать у животных. Соответственно этому нематодозы, вызываемые этими паразитами, являются антропонозными болезнями. Заражение большей частью геогельминтов осуществляется при проглатывании яиц или личинок с продуктами, загрязненными почвой.
Для диагностики всех нематодозов этой группы важно обнаружение яиц в фекалиях больного.
Профилактические меры направлены на предотвращение попадания инвазионных яиц в пищеварительную систему — личная гигиена и гигиена питания, реже — другие меры. Часть геогельминтов, попадая в пищеварительную систему человека, быстро достигают половой зрелости и начинают откладывать яйца, не мигрируя по организму хозяина. Личинки других перед достижением половой зрелости обязательно передвигаются по кровеносным сосудам и дыхательной системе, вторично проглатываются и только после этого развиваются в кишечнике.
Примеры: Влагослав, Острица детская, Угрица кишечная.
1. Наследование групп крови, системы аво и резус-фактора. Резус-конфликт.
2. Рецепторы поверхностного аппарата клеток. Транспорт веществ через мембраны. Мембранный потенциал, градиент концентрации, диффузия, осмос.
3. Жизненный цикл у круглых червей. Чередование хозяев и феномен смены
Промежуточные и основные хозяева. Понятие о геогельминтах, примеры.
Ответ 1. В начале XX столетия К. Ландштейнер и Я. Янский создали учение о группах крови, позволяющее безошибочно и безопасно возмещать кровопотерю у одного человека (реципиента) кровью другого(донора).
Выяснилось, что в мембранах эритроцитов содержатся особые вещества, обладающие антигенными свойствами, — агглютиногены. С ними могут реагировать растворенные в плазме специфические антитела, относящиеся к фракции глобулинов, — агглютинины. При реакции антиген — антитело между несколькими эритроцитами образуются мостики, и они слипаются.
Наиболее распространена система подразделения крови на 4 группы.
Агглютиногены на эритроцитах | Агглютинины плазмы | |
Группа крови | ||
1(0) II (А) III (В) IV (АВ) | отсутствуют (0) А В А и В | α и β β α отсутствуют (0) |
Группа крови | ||||
1(0) | II (А) | III (В) | IV (АВ) | |
Гены, обуславлива ющие антигены | J0 | JA | JB | JA JB |
Генотипы | J0 J0 | JA J0, JA JA | JB J0, JB JB | JA JB |
Около 85% населения Европы имеет в эритроцитах антиген Rh и образует группу Rh -положителъных индивидуумов. Остальные люди из европейской популяции лишены этого антигена и являются Rh -отрицательными. Синтез антигена Rh контролируется доминантным аллелем D и происходит у лиц с генотипами DD и Dd. Резус-отрицательные люди являются рецессивными гомозиготами (dd). При беременности Rh -отрицательной женщины (dd) Rh -положительным плодом (мужчина DD или Dd, плод Dd) при нарушении целостности плаценты в родах Rh -положительные эритроциты плода проникают в организм матери и иммунизируют его. При последующей беременности Rh -положительным плодом (Dd) анти- Rh -антитела проникают через плаценту в организм плода и разрушают его эритроциты. Развивается гемолитическая болезнь новорожденного. Ведущим ее симптомом является тяжелая анемия.
Ответ 2. Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток система поверхностного аппарата. Она представляет собой тончайшую (10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов. Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.
Важнейшим свойством мембраны является избирательная проницаемость. Это означает, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Плазматическая мембрана функционирует как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.
Существует несколько механизмов транспорта веществ через мембрану.
Диффузия — проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ осуществляется при участии белков мембраны, в которых имеются молекулярные поры (вода, ионы), либо при участии липидной фазы (для жирорастворимых веществ).
Облегченная диффузия — специальные мембранные белки-пеносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану.
Активный транспорт. Этот механизм сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Nа+/К+-насос в клетках животных, активно выкачивающий ионы Na+ наружу, поглощая при этом ионы К+. Благодаря этому в клетке поддерживается большая концентрация К+ и меньшая Nа+, чем в окружающей среде. На этот процесс затрачивается энергия АТФ.
В результате активного транспорта с помощью мембранного насоса происходит также регуляция в клетке концентрации Мg2+ и Са2+.
Макромолекулы, такие, как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит посредством эндоцитоза. При эндоцитозе определенный участок плазмалеммы захватывает внеклеточный материал, заключая его в мембранную вакуоль, возникшую за счет впячивания мембраны. Эндоцитоз разделяют на фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости). Процесс, обратный эндоцитозу, — экзоцитоз (экзо — наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли, или пузырьки.
Ответ 3. Совокупность всех стадий онтогенеза паразита и путей передачи его от одного хозяина к другому называют его жизненным циклом. Личинки могут вести как свободный, так и паразитический образ жизни. Хозяин, в котором обитают личинки паразита, носит название промежуточного. Значение промежуточных хозяев в циклах развития паразитов очень велико: они являются источниками заражения окончательных хозяев, часто выполняют расселительные функции, а иногда обеспечивают выживание популяций паразита в случае временного исчезновения окончательных хозяев.
Иногда в цикле развития паразита последовательно сменяются два, три промежуточных хозяина и даже больше. Хозяина, в котором развивается и размножается половым путем половозрелая стадия паразита, называют окончательным или дефинитивным. Заражение его осуществляется либо при поедании промежуточного хозяина, либо при контакте с последним в одной среде обитания.
Выделяют также понятие «резервуар паразита», или «резервуарный хозяин». Это такой хозяин, в организме которого возбудитель заболевания может жить долго, накапливаясь, размножаясь и расселяясь по окружающей территории.
Строение представителей класса круглых червей в основном соответствует характеристике типа в целом. Круглые черви способны жить без кислорода, обходясь гликолизом в процессе энергетического обмена. Адаптациями к обитанию в хозяине являются развитая половая система и у некоторых форм — органы фиксации, а также усложнение циклов развития с участием в ряде случаев промежуточных хозяев. Болезни, вызываемые круглыми червями, называют нематодозами
Круглых червей, сохранивших связь с внешней средой, яйца или личинки которых развиваются в почве, называют геогельминтами.
У этих червей яйца или личинки обязательно развиваются в поверхностных слоях почвы при доступе кислорода и достаточной влажности. Геогельминты обитают в просвете кишки и размножаются яйцами, которые выводятся с фекалиями и развиваются далее в почве. Они либо сами через определенное время становятся инвазионными, либо из них развиваются личинки, ведущие некоторое время свободный образ жизни и позже становящиеся инвазионными. Геогельминты, поражающие человека, не могут паразитировать у животных. Соответственно этому нематодозы, вызываемые этими паразитами, являются антропонозными болезнями. Заражение большей частью геогельминтов осуществляется при проглатывании яиц или личинок с продуктами, загрязненными почвой.
Для диагностики всех нематодозов этой группы важно обнаружение яиц в фекалиях больного.
Профилактические меры направлены на предотвращение попадания инвазионных яиц в пищеварительную систему — личная гигиена и гигиена питания, реже — другие меры. Часть геогельминтов, попадая в пищеварительную систему человека, быстро достигают половой зрелости и начинают откладывать яйца, не мигрируя по организму хозяина. Личинки других перед достижением половой зрелости обязательно передвигаются по кровеносным сосудам и дыхательной системе, вторично проглатываются и только после этого развиваются в кишечнике.
Примеры: Влагослав, Острица детская, Угрица кишечная.