Плазма — Википедия
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырёх основных агрегатных состояний вещества.
Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.
История открытия
Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учетом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы.
Виды
По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твёрдом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма).
Свойства и параметры
Определение плазмы
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.
- Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
- rD3N≫1,{\displaystyle r_{D}^{3}N\gg 1,}
- где N{\displaystyle N} — концентрация заряженных частиц.
- Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
- rDL≪1.{\displaystyle {r_{D} \over L}\ll 1.}
- Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
- τωpl≫1.{\displaystyle \tau \omega _{pl}\gg 1.}
Классификация
Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Температура
Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9].
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).
Степень и кратность ионизации
Для того, чтобы газ перешёл в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni /(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z>ni, где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные плёнки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества». Примером может служить Солнце.
Концентрация частиц в плазме
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов, то есть число свободных электронов в единице объёма. В квазинейтральной плазме
Квазинейтральность
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Отличия от газообразного состояния
Плазму часто называют четвёртым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:
Свойство | Газ | Плазма |
---|---|---|
Электрическая проводимость | Крайне мала К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[10] | Очень высока
|
Число сортов частиц | Один Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях. | Два, или три, или более Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей. |
Распределение по скоростям | Максвелловское Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения. | Может быть немаксвелловское Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны. |
Тип взаимодействий | Бинарные Как правило двухчастичные столкновения, трёхчастичные крайне редки. | Коллективные Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные. |
Сложные плазменные явления
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Математическое описание
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Флюидная (жидкостная) модель
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Кинетическое описание
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Particle-In-Cell (частица в ячейке)
Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.
Базовые характеристики
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ=mi/mp{\displaystyle \mu =m_{i}/m_{p}}; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.
Частоты
- Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
- ωce=eB/mec=1.76×107Brad/s.{\displaystyle \omega _{ce}=eB/m_{e}c=1.76\times 10^{7}B{\mbox{rad/s}}.}
- Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
- ωci=eB/mic=9.58×103Zμ−1Brad/s.{\displaystyle \omega _{ci}=eB/m_{i}c=9.58\times 10^{3}Z\mu ^{-1}B{\mbox{rad/s}}.}
- Плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещёнными относительно ионов:
- ωpe=(4πnee2/me)1/2=5.64×104ne1/2rad/s.{\displaystyle \omega _{pe}=(4\pi n_{e}e^{2}/m_{e})^{1/2}=5.64\times 10^{4}n_{e}^{1/2}{\mbox{rad/s}}.}
- Ионная плазменная частота:
- ωpi=(4πniZ2e2/mi)1/2=1.32×103Zμ−1/2ni1/2rad/s.{\displaystyle \omega _{pi}=(4\pi n_{i}Z^{2}e^{2}/m_{i})^{1/2}=1.32\times 10^{3}Z\mu ^{-1/2}n_{i}^{1/2}{\mbox{rad/s}}.}
- Частота столкновений электронов
- νe=2.91×10−6nelnΛTe−3/2s−1.{\displaystyle \nu _{e}=2.91\times 10^{-6}n_{e}\,\ln \Lambda \,T_{e}^{-3/2}{\mbox{s}}^{-1}.}
- Частота столкновений ионов
- νi=4.80×10−8Z4μ−1/2nilnΛTi−3/2s−1.{\displaystyle \nu _{i}=4.80\times 10^{-8}Z^{4}\mu ^{-1/2}n_{i}\,\ln \Lambda \,T_{i}^{-3/2}{\mbox{s}}^{-1}.}
Длины
- Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
- λ−=ℏ/(mekTe)1/2=2.76×10−8Te−1/2cm.{\displaystyle \lambda \!\!\!\!-=\hbar /(m_{e}kT_{e})^{1/2}=2.76\times 10^{-8}\,T_{e}^{-1/2}\,{\mbox{cm}}.}
- Минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
- e2/kT=1.44×10−7T−1cm.{\displaystyle e^{2}/kT=1.44\times 10^{-7}\,T^{-1}\,{\mbox{cm}}.}
- Гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
- re=vTe/ωce=2.38Te1/2B−1cm.{\displaystyle r_{e}=v_{Te}/\omega _{ce}=2.38\,T_{e}^{1/2}B^{-1}\,{\mbox{cm}}.}
- Гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
- ri=vTi/ωci=1.02×102μ1/2Z−1Ti1/2B−1cm.{\displaystyle r_{i}=v_{Ti}/\omega _{ci}=1.02\times 10^{2}\,\mu ^{1/2}Z^{-1}T_{i}^{1/2}B^{-1}\,{\mbox{cm}}.}
- Размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
- c/ωpe=5.31×105ne−1/2cm.{\displaystyle c/\omega _{pe}=5.31\times 10^{5}\,n_{e}^{-1/2}\,{\mbox{cm}}.}
- Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
- λD=(kT/4πne2)1/2=7.43×102T1/2n−1/2cm.{\displaystyle \lambda _{D}=(kT/4\pi ne^{2})^{1/2}=7.43\times 10^{2}\,T^{1/2}n^{-1/2}\,{\mbox{cm}}.}
Скорости
- Тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
- vTe=(kTe/me)1/2=4.19×107Te1/2cm/s.{\displaystyle v_{Te}=(kT_{e}/m_{e})^{1/2}=4.19\times 10^{7}\,T_{e}^{1/2}\,{\mbox{cm/s}}.}
- vTi=(kTi/mi)1/2=9.79×105μ−1/2Ti1/2cm/s.{\displaystyle v_{Ti}=(kT_{i}/m_{i})^{1/2}=9.79\times 10^{5}\,\mu ^{-1/2}T_{i}^{1/2}\,{\mbox{cm/s}}.}
- Скорость ионного звука, скорость продольных ионно-звуковых волн:
- cs=(γZkTe/mi)1/2=9.79×105(γZTe/μ)1/2cm/s.{\displaystyle c_{s}=(\gamma ZkT_{e}/m_{i})^{1/2}=9.79\times 10^{5}\,(\gamma ZT_{e}/\mu )^{1/2}\,{\mbox{cm/s}}.}
- vA=B/(4πnimi)1/2=2.18×1011μ−1/2ni−1/2Bcm/s.{\displaystyle v_{A}=B/(4\pi n_{i}m_{i})^{1/2}=2.18\times 10^{11}\,\mu ^{-1/2}n_{i}^{-1/2}B\,{\mbox{cm/s}}.}
Безразмерные величины
- Квадратный корень из отношения масс электрона и протона:
- (me/mp)1/2=2.33×10−2=1/42.9.{\displaystyle (m_{e}/m_{p})^{1/2}=2.33\times 10^{-2}=1/42.9.}
- Число частиц в сфере Дебая:
- (4π/3)nλD3=1.72×109T3/2n−1/2.{\displaystyle (4\pi /3)n\lambda _{D}^{3}=1.72\times 10^{9}\,T^{3/2}n^{-1/2}.}
- Отношение Альфвеновской скорости к скорости света
- vA/c=7.28μ−1/2ni−1/2B.{\displaystyle v_{A}/c=7.28\,\mu ^{-1/2}n_{i}^{-1/2}B.}
- Отношение плазменной и ларморовской частот для электрона
- ωpe/ωce=3.21×10−3ne1/2B−1.{\displaystyle \omega _{pe}/\omega _{ce}=3.21\times 10^{-3}\,n_{e}^{1/2}B^{-1}.}
- Отношение плазменной и ларморовской частот для иона
- ωpi/ωci=0.137μ1/2ni1/2B−1.{\displaystyle \omega _{pi}/\omega _{ci}=0.137\,\mu ^{1/2}n_{i}^{1/2}B^{-1}.}
- Отношение тепловой и магнитной энергий
- β=8πnkT/B2=4.03×10−11nTB−2.{\displaystyle \beta =8\pi nkT/B^{2}=4.03\times 10^{-11}\,nTB^{-2}.}
- Отношение магнитной энергии к энергии покоя ионов
- B2/8πnimic2=26.5μ−1ni−1B2.{\displaystyle B^{2}/8\pi n_{i}m_{i}c^{2}=26.5\,\mu ^{-1}n_{i}^{-1}B^{2}.}
Прочее
- Бомовский коэффициент диффузии
- DB=(ckT/16eB)=5.4×102TB−1cm2/s.{\displaystyle D_{B}=(ckT/16eB)=5.4\times 10^{2}\,TB^{-1}\,{\mbox{cm}}^{2}/{\mbox{s}}.}
- Поперечное сопротивление Спитцера
- η⊥=1.15×10−14ZlnΛT−3/2s=1.03×10−2ZlnΛT−3/2Ωcm.{\displaystyle \eta _{\perp }=1.15\times 10^{-14}\,Z\,\ln \Lambda \,T^{-3/2}\,{\mbox{s}}=1.03\times 10^{-2}\,Z\,\ln \Lambda \,T^{-3/2}\,\Omega \,{\mbox{cm}}.}
Современные исследования
См. также
Примечания
Литература
Ссылки
Плазма — Википедия
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырех основных агрегатных состояний вещества.
Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.
История открытия
Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учетом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы.
Виды
По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твёрдом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма).
Свойства и параметры
Определение плазмы
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:[5][6][7]
- Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
- rD3N≫1,{\displaystyle r_{D}^{3}N\gg 1,}
- где N{\displaystyle N} — концентрация заряженных частиц.
- Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
- rDL≪1.{\displaystyle {r_{D} \over L}\ll 1.}
- Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
- τωpl≫1.{\displaystyle \tau \omega _{pl}\gg 1.}
Классификация
Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Температура
Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9].
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).
Степень и кратность ионизации
Для того, чтобы газ перешёл в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni /(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z>ni, где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные плёнки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества». Примером может служить Солнце.
Концентрация частиц в плазме
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов, то есть число свободных электронов в единице объёма. В квазинейтральной плазме концентрация ионов связана с ней посредством среднего зарядового числа ионов ⟨Z⟩{\displaystyle \langle Z\rangle }: ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}. Следующей важной величиной является концентрация нейтральных атомов n0{\displaystyle n_{0}}. В горячей плазме n0{\displaystyle n_{0}} мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром концентрации становится rs{\displaystyle r_{s}}, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.
Квазинейтральность
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Отличия от газообразного состояния
Плазму часто называют четвёртым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:
Свойство | Газ | Плазма |
---|---|---|
Электрическая проводимость | Крайне мала К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[10] | Очень высока
|
Число сортов частиц | Один Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях. | Два, или три, или более Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей. |
Распределение по скоростям | Максвелловское Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения. | Может быть немаксвелловское Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны. |
Тип взаимодействий | Бинарные Как правило двухчастичные столкновения, трёхчастичные крайне редки. | Коллективные Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные. |
Сложные плазменные явления
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Математическое описание
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Флюидная (жидкостная) модель
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Кинетическое описание
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Particle-In-Cell (частица в ячейке)
Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.
Базовые характеристики
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ=mi/mp{\displaystyle \mu =m_{i}/m_{p}}; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.
Частоты
- Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
- ωce=eB/mec=1.76×107Brad/s.{\displaystyle \omega _{ce}=eB/m_{e}c=1.76\times 10^{7}B{\mbox{rad/s}}.}
- Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
- ωci=eB/mic=9.58×103Zμ−1Brad/s.{\displaystyle \omega _{ci}=eB/m_{i}c=9.58\times 10^{3}Z\mu ^{-1}B{\mbox{rad/s}}.}
- Плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещёнными относительно ионов:
- ωpe=(4πnee2/me)1/2=5.64×104ne1/2rad/s.{\displaystyle \omega _{pe}=(4\pi n_{e}e^{2}/m_{e})^{1/2}=5.64\times 10^{4}n_{e}^{1/2}{\mbox{rad/s}}.}
- Ионная плазменная частота:
- ωpi=(4πniZ2e2/mi)1/2=1.32×103Zμ−1/2ni1/2rad/s.{\displaystyle \omega _{pi}=(4\pi n_{i}Z^{2}e^{2}/m_{i})^{1/2}=1.32\times 10^{3}Z\mu ^{-1/2}n_{i}^{1/2}{\mbox{rad/s}}.}
- Частота столкновений электронов
- νe=2.91×10−6nelnΛTe−3/2s−1.{\displaystyle \nu _{e}=2.91\times 10^{-6}n_{e}\,\ln \Lambda \,T_{e}^{-3/2}{\mbox{s}}^{-1}.}
- Частота столкновений ионов
- νi=4.80×10−8Z4μ−1/2nilnΛTi−3/2s−1.{\displaystyle \nu _{i}=4.80\times 10^{-8}Z^{4}\mu ^{-1/2}n_{i}\,\ln \Lambda \,T_{i}^{-3/2}{\mbox{s}}^{-1}.}
Длины
- Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
- λ−=ℏ/(mekTe)1/2=2.76×10−8Te−1/2cm.{\displaystyle \lambda \!\!\!\!-=\hbar /(m_{e}kT_{e})^{1/2}=2.76\times 10^{-8}\,T_{e}^{-1/2}\,{\mbox{cm}}.}
- Минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
- e2/kT=1.44×10−7T−1cm.{\displaystyle e^{2}/kT=1.44\times 10^{-7}\,T^{-1}\,{\mbox{cm}}.}
- Гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
- re=vTe/ωce=2.38Te1/2B−1cm.{\displaystyle r_{e}=v_{Te}/\omega _{ce}=2.38\,T_{e}^{1/2}B^{-1}\,{\mbox{cm}}.}
- Гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
- ri=vTi/ωci=1.02×102μ1/2Z−1Ti1/2B−1cm.{\displaystyle r_{i}=v_{Ti}/\omega _{ci}=1.02\times 10^{2}\,\mu ^{1/2}Z^{-1}T_{i}^{1/2}B^{-1}\,{\mbox{cm}}.}
- Размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
- c/ωpe=5.31×105ne−1/2cm.{\displaystyle c/\omega _{pe}=5.31\times 10^{5}\,n_{e}^{-1/2}\,{\mbox{cm}}.}
- Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
- λD=(kT/4πne2)1/2=7.43×102T1/2n−1/2cm.{\displaystyle \lambda _{D}=(kT/4\pi ne^{2})^{1/2}=7.43\times 10^{2}\,T^{1/2}n^{-1/2}\,{\mbox{cm}}.}
Скорости
- Тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
- vTe=(kTe/me)1/2=4.19×107Te1/2cm/s.{\displaystyle v_{Te}=(kT_{e}/m_{e})^{1/2}=4.19\times 10^{7}\,T_{e}^{1/2}\,{\mbox{cm/s}}.}
- vTi=(kTi/mi)1/2=9.79×105μ−1/2Ti1/2cm/s.{\displaystyle v_{Ti}=(kT_{i}/m_{i})^{1/2}=9.79\times 10^{5}\,\mu ^{-1/2}T_{i}^{1/2}\,{\mbox{cm/s}}.}
- Скорость ионного звука, скорость продольных ионно-звуковых волн:
- cs=(γZkTe/mi)1/2=9.79×105(γZTe/μ)1/2cm/s.{\displaystyle c_{s}=(\gamma ZkT_{e}/m_{i})^{1/2}=9.79\times 10^{5}\,(\gamma ZT_{e}/\mu )^{1/2}\,{\mbox{cm/s}}.}
- vA=B/(4πnimi)1/2=2.18×1011μ−1/2ni−1/2Bcm/s.{\displaystyle v_{A}=B/(4\pi n_{i}m_{i})^{1/2}=2.18\times 10^{11}\,\mu ^{-1/2}n_{i}^{-1/2}B\,{\mbox{cm/s}}.}
Безразмерные величины
- Квадратный корень из отношения масс электрона и протона:
- (me/mp)1/2=2.33×10−2=1/42.9.{\displaystyle (m_{e}/m_{p})^{1/2}=2.33\times 10^{-2}=1/42.9.}
- Число частиц в сфере Дебая:
- (4π/3)nλD3=1.72×109T3/2n−1/2.{\displaystyle (4\pi /3)n\lambda _{D}^{3}=1.72\times 10^{9}\,T^{3/2}n^{-1/2}.}
- Отношение Альфвеновской скорости к скорости света
- vA/c=7.28μ−1/2ni−1/2B.{\displaystyle v_{A}/c=7.28\,\mu ^{-1/2}n_{i}^{-1/2}B.}
- Отношение плазменной и ларморовской частот для электрона
- ωpe/ωce=3.21×10−3ne1/2B−1.{\displaystyle \omega _{pe}/\omega _{ce}=3.21\times 10^{-3}\,n_{e}^{1/2}B^{-1}.}
- Отношение плазменной и ларморовской частот для иона
- ωpi/ωci=0.137μ1/2ni1/2B−1.{\displaystyle \omega _{pi}/\omega _{ci}=0.137\,\mu ^{1/2}n_{i}^{1/2}B^{-1}.}
- Отношение тепловой и магнитной энергий
- β=8πnkT/B2=4.03×10−11nTB−2.{\displaystyle \beta =8\pi nkT/B^{2}=4.03\times 10^{-11}\,nTB^{-2}.}
- Отношение магнитной энергии к энергии покоя ионов
- B2/8πnimic2=26.5μ−1ni−1B2.{\displaystyle B^{2}/8\pi n_{i}m_{i}c^{2}=26.5\,\mu ^{-1}n_{i}^{-1}B^{2}.}
Прочее
- Бомовский коэффициент диффузии
- DB=(ckT/16eB)=5.4×102TB−1cm2/s.{\displaystyle D_{B}=(ckT/16eB)=5.4\times 10^{2}\,TB^{-1}\,{\mbox{cm}}^{2}/{\mbox{s}}.}
- Поперечное сопротивление Спитцера
- η⊥=1.15×10−14ZlnΛT−3/2s=1.03×10−2ZlnΛT−3/2Ωcm.{\displaystyle \eta _{\perp }=1.15\times 10^{-14}\,Z\,\ln \Lambda \,T^{-3/2}\,{\mbox{s}}=1.03\times 10^{-2}\,Z\,\ln \Lambda \,T^{-3/2}\,\Omega \,{\mbox{cm}}.}
Современные исследования
См. также
Примечания
Литература
Ссылки
Плазма атмосферного давления — Википедия
Материал из Википедии — свободной энциклопедии
Плазма атмосферного давления — плазма, генерируемая при атмосферном или близком к нему давлении.
По сравнению с технологическими плазмами низкого и высокого давления, генерация которых требует специализированных камер и насосов, плазма атмосферного давления не требует дорогостоящего оборудования для создания и поддержания определенного внешнего давления. Этот фактор значительно сокращает стоимость плазменного оборудования и одновременно увеличивает его надежность[1]. Обработка атмосферной плазмой легко встраивается в производственные линии.
Существует несколько широко используемых методов генерации атмосферной плазмы:
Принцип генерации плазмы дуговым разрядом[править | править код]
Пульсирующий дуговой разряд генерируется высоким напряжением в диапазоне 5-15 кВ пульсирующим с частотой 10-100 кГц. Рабочий газ продувается через область разряда, отжимая дугу разряда от стенок камеры и охлаждая сами стенки. Атомы и молекулы газа ионизируются столкновениями создавая частично ионизированную плазму. Типичная температура плазмы в дуге достигает 6000 – 12000 К[2]. При этом распределение электронов по энергиям неравновесно: средняя энергия электронов выше энергии молекул, атомов и ионов. Помимо ионизации, энергичные столкновения электронов, атомов и молекул приводят к их возбуждению, а также к химическим реакциям, создавая высокореактивные короткуживущие свободные радикалы, отвечающие за высокую химическую активность плазмы. Проходя через активную область ионизированный газ с высокой концентрацией свободных радикалов направляется на обрабатываемую поверхность. В случае металлических обрабатываемых поверхностей, их можно использовать в качестве катода. Дуговой разряд горит между анодом генератора плазмы и обрабатываемой поверхностью. При этом ионы и свободные радикалы генерируются в непосредственной близости от обрабатываемой поверхности.
Холодная неравновесная плазма атмосферного давления находит много промышленных применений, в частности для высокотонкой очистки и активации поверхностей металлов и пластмасс для подготовки этих поверхностей к покраске и склеиванию. Создавая на поверхности химически активный слой, плазменная обработка значительно улучшает качество покрытий. Этот эффект достигается без применения химических препаратов, что является важным фактором при достижении безопасности и экологической чистоты промышленных процессов. При использовании в конвейерном производстве ширина плазменной обработки может достигать нескольких метров, а скорость обработки десятков метров в секунду. Плазменная обработка приводит к более высокой степени активации по сравнению с обработкой коронным разрядом.
- ↑ R.A. Wolf, Atmospheric Pressure Plasma for Surface Modification, Wiley, 2012
- ↑ Ю.П. Райзер, Физика газового разряда, Издательский дом Интеллект, Долгопрудный, 2009
Индуктивно-связанная плазма — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 июня 2018; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 июня 2018; проверки требуют 7 правок. Горелка аналитической ИСП, наблюдаемой через тёмное зелёное стекло (как в очках для сварки)Индукти́вно-свя́занная пла́зма (ИСП), англ. inductively coupled plasma, ICP — плазма, образующаяся внутри разрядной камеры, горелки или иного плазменного реактора при приложении высокочастотного переменного магнитного поля.
Индуктивно-связанная плазма (ИСП) – это тип газового разряда, возбуждаемого переменным магнитным полем при помощи индукционной катушки (индуктора). ИСП также имеет другие названия: индукционная плазма, индукционный разряд. ИСП зажигается и поддерживается за счёт циклических индуцированных вихрей электрического тока свободных электронов (и ионов) в плазме. Для возбуждения ИСП обычно используется переменное электромагнитное поле на частоте 1 – 100 МГц. ИСП впервые наблюдал Хитторф в 1884 году, который обнаружил свечение остаточного газа в разрядной камере при пропускании высокочастотного тока через соленоид, охватывающий разрядный объём.
Главное отличие ИСП от ёмкостного разряда заключается в том, что ИСП возбуждается (индуцируется) магнитным полем, в то время как ёмкостной разряд возбуждается и поддерживается за счёт электрического поля (постоянного или переменного). При прочих равных условиях ИСП характеризуется существенно более высокой концентрацией электронов по сравнению с ёмкостным разрядом.
ИСП при атмосферном давлении (обычно в аргоне) в виде открытой горелки используется в спектроскопических методах аналитической химии для определения состава веществ и материалов. ИСП при низком давлении (часто в агрессивных газах) в закрытых реакторах используется для плазменного травления (этчинга, от etching — травление) при производстве полупроводниковой микроэлектроники.
В аналитической ИСП в горелку обычно подаётся растворённое анализируемое вещество, распыляемое в виде аэрозоля и вносимое в плазменную горелку потоком аргона. Когда в плазму аргоновой горелки попадают капельки аэрозоля, они моментально испаряются и распадаются на атомы и ионы. Другой метод ввода интересующего материала в плазму состоит в том, чтобы химически превратить определяемое вещество в молекулы газа, например, легколетучие гидриды. Третий способ — создание «сухого» аэрозоля с помощью мощного лазерного луча, который выжигает кратер в подставленном под него кусочке материала, переводя небольшую его часть в мелкодисперсное аэрозольное состояние — это так называемая лазерная абляция). Возбуждённые в плазме атомы и ионы детектируются методами атомно-эмиссионной спектрометрии (ИСП-АЭС), либо масс-спектрометрии (ИСП-МС).
Плазменное травление в реакторах ИСП для изготовления полупроводниковой продукции обычно производится при давлениях 0.1 – 10 Па. В то же время для изотропного удаления слоёв или очистки внутренних поверхностей реактора часто требуется увеличение давления до ~1000 Па, что тем не менее значительно ниже атмосферного давления (100 кПа = 1000 гектопаскалей). Кроме плазменного травления, в микроэлектронной промышленности используются разнообразные технологические плазменные процессы, например, ионная имплантация, плазмохимическое выращивание слоёв, удаление слоёв путём их распыления, плазменная чистка поверхностей и другие. При этом применяются различные газовые смеси и различные типы реакторов.
- Аналитическая ИСП характеризуется высокой концентрацией электронов (порядка 1015 см-3), а также высокой температурой (более 6000 К), что позволяет практически полностью атомизировать любые анализируемые вещества.
- Высокая концентрация электронов и ионов в ИСП также является одним из её главных преимуществ при плазменном травлении, поскольку обеспечивает высокую скорость и качество травления.
- Обычно индукционная катушка находится вне камеры горения, поэтому она не взаимодействует с плазмой, не разрушается агрессивными компонентами плазмы и не загрязняет плазму продуктами этого воздействия. Другими словами, данный тип газового разряда является безэлектродным.
- А. Монтасер, Д. Голайтли, «Индуктивно-связанная плазма в аналитической атомной спектрометрии» // VCH Publishers, Нью-Йорк, 1992.
- А. Монтасер, ред., «Масс-спектрометрия с индуктивно-связанной плазмой» // Wiley-VCH: Нью-Йорк, 1998.
- Hittorf W. Ueber die electricitaetsleitung der gase / W. Hittorf // Ann.Phys. Chem. – 1884. – Vol.21. – P.90-139.
Плазмоид — Википедия
Материал из Википедии — свободной энциклопедии
- У этого термина существуют и другие значения, см. Plasma (KDE).
Плазмоид — плазменный сгусток, ограниченная конфигурация магнитных полей и плазмы.
Возможно использование генерируемых СВЧ-излучением плазмоидов в промышленности[1].
Некоторые исследователи рассматривают частицы микромира как плазмоиды.[2]
Магнитное поле автономного плазмоида поддерживается собственными токами плазмы, и чем меньше при этом утечки энергии, тем дольше он может существовать,[3] таким образом, исследование плазмоидов — возможный путь к получению лабораторной шаровой молнии[4].
Было получено экспериментальное подтверждение того, что в определённых условиях плазмоиды могут «размножаться»[5].
Плазмоидные образования вблизи поверхности Земли образуются преимущественно над газовыделяющими структурами и тектоническими разломами. Размеры плазмоидов колеблются от 3-5 см до 100[источник не указан 2394 дня] и более метров. Некоторые из них могут фиксироваться фотоаппаратом (инфракрасный и ультрафиолетовый диапазоны частот электромагнитных волн), в редких случаях могут быть зафиксированы даже невооружённым глазом. Образование плазмоидов происходит по модели шаровой молнии, согласно которой плазменную фазу удерживает тонкая молекулярно-кристаллическая оболочка, состоящая из электрически заряженных кластеров «скрытой» фазы воды[6][неавторитетный источник?].
Плазмотрон — Википедия
Материал из Википедии — свободной энциклопедии
Плазменная горелкаПлазмотро́н — техническое устройство, в котором при протекании электрического тока через разрядный промежуток образуется плазма, используемая для обработки материалов или как источник света и тепла. Буквально, плазмотрон означает — генератор (производитель) плазмы.
Первые плазмотроны появились в середине 20-го века в связи с появлением устойчивых в условиях высоких температур материалов и расширением производства тугоплавких металлов. Другой причиной появления плазмотронов явилась элементарная потребность в источниках тепла большой мощности. Замечательными особенностями плазмотрона как инструмента современной технологии являются:
- Получение сверхвысоких температур (до 150 000 °C, в среднем получают 10 000-30 000 °C), недостижимых при сжигании химического топлива.
- Компактность и надёжность.
- Лёгкое регулирование мощности, лёгкий пуск и остановка рабочего режима плазмотрона.
Электродуговые:
- С прямой дугой.
- С косвенной дугой.
- С электролитическим электродом (электродами).
- С вращающейся дугой.
- С вращающимися электродами.
Высокочастотные:
- Индукционные
- Ёмкостные
Комбинированные:
Работают при совместном действии токов высоких частот (ТВЧ) и при горении дугового разряда, в том числе с сжатием разряда магнитным полем.
- сварка и резка металлов и тугоплавких материалов
- нанесение ионно-плазменных защитных покрытий на различные материалы (см. Плазменное напыление)
- нанесение керамических термобарьерных, электроизоляционных покрытий на металлы (см. Плазменное напыление)
- подогрев металла в ковшах при мартеновском производстве
- получение нанодисперсных порошков металлов и их соединений для металлургии
- двигатели космических аппаратов
- термическое обезвреживание высокотоксичных органических отходов
- Синтез химических соединений (например синтез оксидов азота и др., см. Плазмохимия)
- Накачка мощных газовых лазеров.
- Плазменная проходка крепких горных пород.
- Безмазутная растопка пылеугольных котлов электростанций.
- Расплавление и рафинирование (очистка) металлов при плазменно-дуговом переплаве.
Особенности применяемых материалов в конструкции[править | править код]
Дуговые плазмотроны[править | править код]
Устройство плазмотрона с продольной стабилизацией дугиПлазменная горелка дугового плазмотрона имеет по меньшей мере один анод и один катод, к которым подключают источник питания постоянного тока. Для охлаждения используют каналы, омываемые обычно водой.
Высокочастотные плазмотроны[править | править код]
Устройство промышленного высокочастотного индукционного плазмотронаВысокочастотные плазмотроны являются безэлектродными и используют индуктивную или ёмкостную связь с источником мощности. Поскольку для прохождения высокочастотной мощности сквозь стенки разрядной камеры, последняя должна быть выполнена из непроводящих материалов, в качестве таковых, как правило используется кварцевое стекло или керамика. Поскольку для поддержания безэлектродного разряда не требуется электрического контакта плазмы с электродами, применяют газодинамическую изоляцию стенок от плазменной струи, что позволяет избежать их чрезмерного нагрева и ограничиться воздушным охлаждением.
Применение таких химически устойчивых материалов позволяет использовать в качестве рабочего тела воздух, кислород, пары воды, аргон, азот и другие газы.
СВЧ плазмотроны[править | править код]
Плазмотроны данного типа основаны на сверхвысокочастотном разряде, как правило в резонаторе, сквозь который продувается плазмообразующий газ.
- Жуков М.Ф. Электродуговые нагреватели газа (плазмотроны). — М.: Наука, 1973. — 232 с.
- Ю. П. Конюшная. Открытия советских учёных. — Ч. 1. — М.: Изд-во МГУ, 1988.
- Попов В. Ф., Горин Ю. Н. Процессы и установки электронно-ионной технологии. — М.: Высш. шк., 1988. — 255 с. — ISBN 5-06-001480-0.
- Виноградов М.И., Маишев Ю.П. Вакуумные процессы и оборудование ионно — и электронно-лучевой технологии. — М.: Машиностроение, 1989. — 56 с. — ISBN 5-217-00726-5.
Плазма-Прогресс — Википедия
Материал из Википедии — свободной энциклопедии
Плазма-Прогресс — серия экспериментов, проводимых после отстыковки транспортного грузового корабля серии «Прогресс» от Международной космической станции. Исследование наземными средствами наблюдения отражательных характеристик плазменного окружения космического аппарата при работе бортовых двигателей[1].
Постановщик: ФГУП ЦНИИмаш;
Участники:
Научный руководитель: д.т. н. В. И. Лукьященко;
Куратор: к.т. н. О. Ю. Криволапова.
Определение пространственно-временных зависимостей плотности плазменного окружения космического аппарата, возникающего при работе на его борту жидкостных ракетных двигателей.
- Проведение измерений изменения ионного состава возмущенной области ионосферы при работе СКД ТГК «Прогресс»;
- Определение пространственно-временных характеристик области ионосферных возмущений при пролёте ТГК «Прогресс» и при работе СКД;
- Проведение измерений флуктуации величин концентрации и температуры электронов ионосферы на трассе полета ТГК «Прогресс» и МКС и оценка возмущений ионосферы, генерируемых струями СКД;
- Адаптация физической модели формирования плазменной оболочки в окрестности КА применительно к ТГК «Прогресс»;
- Исследование взаимодействия образующихся вокруг низкоорбитальных КА плазменных образований с набегающим ионосферным потоком и солнечным излучением;
- Проведение анализа влияния выхлопных струй ДУ на радиооблик низкоорбитального КА в диапазоне частот от 154 до 162 МГц путём сопоставления отражательных характеристик ТГК «Прогресс» при работающих и неработающих двигателях[2].
Получение отражательных характеристик ТГК «Прогресс» при различных условиях выполнения эксперимента[3].
В эксперименте «Плазма-Прогресс» задействована штатная двигательная установка ТГК Прогресс и наземные средства радионаблюдения — радар некогерентного рассеяния ИСЗФ СО РАН (г. Иркутск).