ПАРЕНХИМНЫЕ КЛЕТКИ — это… Что такое ПАРЕНХИМНЫЕ КЛЕТКИ?
- ПАРЕНХИМНЫЕ КЛЕТКИ
- — клетки, по форме близкие к шару, кубу или короткому цилиндру, т. е. такие клетки, у которых длина ненамного превышает ширину. Оболочки П. к. обычно целлюлозные, тонкие.
Словарь ботанических терминов. — Киев: Наукова Думка. Под общей редакцией д.б.н. И.А. Дудки. 1984.
- ПАРЕНХИМНОЕ ВЛАГАЛИЩЕ
- ПАРЕНХИМНЫЕ ПОЯСА
Смотреть что такое «ПАРЕНХИМНЫЕ КЛЕТКИ» в других словарях:
Клетки — получить на Академике рабочий купон на скидку Галерея Косметики или выгодно клетки купить с бесплатной доставкой на распродаже в Галерея Косметики
Клетки-спутницы — специализированные паренхимные клетки, примыкающие к ситовидным трубкам и участвующие в их работе. Метаболически клетки спутницы весьма активны; от обычных паренхимных клеток их отличают более плотная цитоплазма и более мелкие вакуоли. Они… … Википедия
клетки страсбургера — паренхимные клетки флоэмы архегониальных растений, функционально связанные с ситовидными клетками, от которых отличаются наличием крупного (часто полиплоидного) ядра, большим количеством митохондрий, рибосом. В К. С. идет синтез РНК, АТФ,… … Анатомия и морфология растений
ПАРЕНХИМНЫЕ ПОЯСА — клетки древесинной паренхимы, соединяющие сосуды в виде тангентальных многослойных полос … Словарь ботанических терминов
ПЕРЕДАТОЧНЫЕ КЛЕТКИ — паренхимные клетки, имеющие множество выростов оболочки, которые увеличивают поверхность наружной клеточной мембраны (плазмалеммы) для более эффективной передачи и транспорта растворенных веществ в соседние клетки … Словарь ботанических терминов
передаточные клетки — специализированные паренхимные клетки флоэмы, приспособленные к обмену продуктами метаболизма через наружные клеточные стенки и плазмалемму. Стенка П. к. имеет многочисленные выросты, вдающиеся в полость клетки, что значительно увеличивает… … Анатомия и морфология растений
Спутницы — клетки спутницы, сопровождающие клетки у растений, паренхимные клетки, примыкающие к ситовидным трубкам флоэмы и связанные с ними онтогенетически и физиологически. См. Ситовидные трубки, Луб … Большая советская энциклопедия
ФЛОЭМНАЯ ПАРЕНХИМА — паренхимные клетки, возникающие во флоэмной части путем деления камбиальных клеток и образующие рыхлую ткань с большим числом межклетников, расположенную в виде продольных рядов в зоне флоэмы пучков, а в зоне флоэмы коры стеблей сосудистых… … Словарь ботанических терминов
Тиллы — Паренхимные клетки, лежащие по соседству с сосудами, нередко дают выросты внутрь полости сосудов. Выросты эти образуются в тех местах, где оболочка сосуда тонка, и называются они Т. Содержимое Т. состоит из протоплазмы и клеточного сока; оболочка … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Ткани растений* — группы клеток, расположенные в теле растения известным порядком, имеющие определенное строение и служащие для различных жизненных отправлений растительного организма. Клетки почти всех многоклеточных растений не однородны, а собраны в Т. У низших … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Ткани растений — группы клеток, расположенные в теле растения известным порядком, имеющие определенное строение и служащие для различных жизненных отправлений растительного организма. Клетки почти всех многоклеточных растений не однородны, а собраны в Т. У низших … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
27. Ткани основной паренхимы. Происхождение и классификация, размещение в растительном организме, выполняемые функции
Основные ткани составляют большую часть тела растения. По происхождению основные ткани почти всегда первичны, образуются из апикальных меристем. Они состоят из живых паренхимных клеток, чаще почти изодиаметрических, тонкостенных, с простыми порами. Основная паренхима способна возвращаться к меристематической активности, например при заживлении ран, образовании придаточных корней и побегов. Основные ткани связаны с синтезом, накоплением и использованием органических веществ. В зависимости от выполняемой функции различают основную (типичную), ассимиляционную, запасающую и воздухоносную основные ткани. Основная паренхима не имеет специфических, строго определенных функций. Она располагается внутри тела растения достаточнокрупными массивами. Типичная основная паренхима заполняет сердцевину стебля, внутренние слои коры стебля и корня. Ее клетки образуют вертикальные и горизонтальные тяжи (лучи), по которым осуществляется радиальный транспорт веществ. Из основной паренхимы могут возникать вторичные меристемы. Ассимиляционная паренхима (хлоренхима). Главная ее функция — фотосинтез. Хлоренхима расположена в надземных органах, обычно под эпидермой. Особенно хорошо развита в листьях, меньше — в молодых стеблях. Характерно наличие межклетников, облегчающих газообмен. Клетки тонкостенные, в постенном слое цитоплазмы много хлоропластов. Общий объем их может достигать 70…80 % объема протопласта. Запасающая паренхима. Служит местом отложения избыточных в данный период питательных веществ. Запасающие ткани состоят из живых тонкостенных клеток. Они могут содержать много лейкопластов (крахмал), крупные вакуоли (сахара, инулин), много мелких вакуолей, образующих алейроновые зерна (белок), толстые клеточные стенки (гемицеллюлозы в семенах финиковой пальмы), жировые клетки. В этих тканях накапливаются многие растительные продукты, используемые человеком. У культурных пищевых растений обычно гипертрофировано развитие запасающей паренхимы. Запасающие ткани широко распространены, развиваются в самых разных органах. Их можно обнаружить в клубнях картофеля, корнеплодах свеклы, моркови, луковицах лука, зерновках злаков, в семенах подсолнечника, клещевины, а также в стеблях сахарного тростника, корневищах, корнях. У растений засушливых мест — суккулентов (агавы, алоэ, кактусы) — в клетках запасающей паренхимы накапливается вода, также как у растений засоленных местообитаний (солерос). Крупные водоносные клетки есть в стеблях злаков. В вакуолях водоносных клеток имеются слизистые вещества с высокой водоудерживающей способностью. Воздухоносная паренхима (аэренхима). Выполняет вентиляционные, отчасти дыхательные функции, обеспечивая ткани кисло родом. Состоит из клеток различной формы (например, звездчатых) и крупных межклетников. Хорошо развита в органах растений, погруженных в воду (в цветоножках кувшинки, в стеблях пушицы, белокрыльника, рдеста, в корнях камыша). Под этим названием объединяют ткани, составляющие основную массу различных органов растения. Их называют т акже выполняющими, основной паренхимой или просто паренхимой. Основная ткань состоит из живых паренхимных клеток с тонкими стенками. Между клетками имеются межклетники. Паренхимные клетки выполняют разнообразные функции: фотосинтез, хранение запасных продуктов, поглощение веществ и др. Выделяют следующие основные ткани. Ассимиляционная, или хлорофиллоносная, паренхима (хлоренхима) расположена в листьях и коре молодых стеблей. Клетки ассимиляционной паренхимы содержат хлоропласты и осуществляют фотосинтез. Строение и функции. Главная функция ассимиляционных тканей — фотосинтез. Именно в этих тканях синтезируется основная масса органических веществ и связывается энергия, получаемая Землей от Солнца.Процесс фотосинтеза определяет характер всей биосферы нашей планеты и делает ее пригодной для жизни человека. Ассимиляционные ткани имеют относительно простое строение и состоят из довольно однородных тонкостенных паренхимных клеток. В их постенном слое цитоплазмы содержатся многочисленные хлоропласты. Такое расположение имеет определенный приспособительный смысл: в клетке умещается большое число хлоропластов, которые в наименьшей мере затеняют друг друга и приближены к источнику СО 2, поступающего извне. В зависимости от условий освещения и газообмена хлоропласты легко перемещаются (что хорошо видно в листьях элодеи ). В некоторых случаях увеличение поверхности постенного слоя цитоплазмы, а следовательно, и числа хлоропластов в клетке достигается тем, что оболочка образует складки, вдающиеся клетки, как в хвоинках сосны. Как показали наблюдения с помощью электронного микроскопа и математические расчеты, в растущей клетке хлоренхимы число хлоропластов быстро увеличивается в 5 и более раз; увеличивается т акже число рибосом и тилакоидов в них. Общий объем хлоропластов может достигать 70—80% всего объема клеточного протопласта. После того как фотосинтез достиг максимума, во взрослой клетке наблюдаются изменения обратного характера, определяющие старение. Однако если в растущих клетках хлоропласты формируются у всех растений в течение 5— 10 дней, то продолжительность их существования и скорость старения могут колебаться от немногих недель (у трав, листопадных деревьев) до нескольких лет (например, у вечнозеленых растений). Расположение в теле растения. Ассимиляционные ткани в теле растения чаще всего залегают непосредственно под прозрачной кожицей (эпидермой), что обеспечивает газообмен и хорошее освещение. В хлоренхиме находятся большие межклетники, облегчающие циркуляцию газов. Просвечивая сквозь прозрачную эпидерму, хлоренхима придает зеленый цвет листьям и молодым стеблям. Иногда хлоренхима находится в глубине стебля, под механической тканью или еще глубже,вокруг проводящих пучков. В последнем случае, вероятно, главное значение имеет не синтез углеводов, а выделение кислорода в процессе дыхания. Этот кислород потребляется в процессе дыхания внутренними тканями стебля, в первую очередь живыми клетками проводящих пучков, дыхание которых необходимо для интенсивной деятельности, связанной с проведением веществ. Хлоренхима имеется также в органах цветка, в плодах. В редких случаях она образуется и в корнях, доступных свету (в воздушных корнях, в корнях водных растений). Запасающая паренхима находится преимущественно в сердцевине стебля и коре корня, а также в органах размножения — семенах, плодах, луковицах, клубнях и др. К запасающей ткани можно отнести также водозапасающую ткань растений засушливых местообитаний (кактусов, алоэ и др.). Строение и функции. Вещества, синтезированные растением или воспринятые извне, могут откладываться в виде запасов. К накоплению запасных веществ способны все живые клетки. О запасающих тканях говорят в тех случаях, когда запасающая функция выступает на первое место. Запасающие ткани широко распространены у многих растений и в самых различных органах. Запасаются они в семенах и служат для будущего развития зародыша. У однолетних растений, проходящих весь жизненный цикл за один сезон, обычно не бывает значительных отложений веществ в вегетативных органах. Многолетние растения накапливают запасы веществ как в обычных корнях и побегах, так и в специализированных органах — клубнях, корневищах, луковицах, расходуя эти запасы после периодов покоя. Запасающие ткани состоят из живых, чаще всего паренхимных клеток. Типы запасных веществ. Вещества накапливаются в твердом или растворенном виде. В виде твердых зерен откладываются крахмал и запасные белки. У некоторых растений запасным веществом могут служить гемицеллюлозы, входящие в состав оболочек. Например, много гемицеллюлоз содержат толстые клеточные оболочки в семенах финиковой пальмы. При прорастании семени гемицеллюлозы под действием ферментов превращаются в сахара, мобилизуемые проростком.
В растворенном виде накапливаются сахара, например в корнеплодах свеклы, моркови, в луковицах лука, в стеблях сахарного тростника, в мякоти плодов винограда, арбуза и т. д.
Растения, периодически испытывающие недостаток воды, иногда образуют особые водоносные запасающие ткани. Чаще всего эти ткани состоят из крупных тонкостенных паренхимных клеток, которые содержат слизи, помогающие удерживать воду. Поглощающая паренхима наиболее типично представлена во всасывающей зоне корня слоем клеток с корневыми волосками (эпиблема). Аэренхима особенно хорошо выр ажен а в подводных органах растений, в воздушных и дыхательных корнях. Она имеет крупные межклетники, соединенные между собой в одну вентиляционную сеть. Функции межклетников. Во всех органах и почти—во всех тканях имеются межклетники, образующие связные системы. Несмотря на то что системы межклетников сообщаются с внешней атмосферой через многочисленные проходные отверстия в покровных тканях, газовый состав в межклетниках сильно отличается от газового состава атмосферы, так как клетки в процессе своей жизнедеятельности (фотосинтеза, дыхания, испарения) выделяют в межклетники одни газы и поглощают другие. Условия обитания и общая организация того или иного растения определяют характер циркуляции газов по межклетникам, необходимый для нормальной жизни. Довольно часто в растениях образуется ткань с очень большими межклетниками. Строение аэренхимы. Чаще всего она представляет собой своеобразную модификацию паренхимы. Однако клетки в ней могут иметь самую различную форму, и крупные межклетники воз никают при различных сочетаниях клеток. В цветоножке кубышки аэренхима составлена округлыми клетками, а в стебле ситника — звездчатыми. Иногда в состав аэренхимы входят механические, выделительные и другие клетки. Особенно сильного развития аэренхима достигает у растений, которые обитают в среде, затрудняющей нормальный газообмен и снабжение внутренних тканей кислородом, например у растений, погруженных в воду или растущих на болотной почве. Прямыми экспериментами было показано, что кислород из н ад земных органов поступает в корневища и корни по межклетникам. Всасывающие ткани, играют важную роль в жизни растений. Через них в тело растения из внешней среды поступают вода и растворенные в ней вещества. Они очень различны по структуре и по распространенности среди высших растений. Наибольшее значение имеет ризодерма (греч. риза — корень; дерма — кожа) — наружный слой клеток на всех молодых корнях. Через ризодерму в корень всасывается из почвы вода и поглощаются растворенные в ней вещества. Остальные типы всасывающих тканей встречаются или в каких-то определенных систематических группах, или их наличие связано с приспособлением к особым условиям существования. Поэтому они будут рассмотрены более подробно при описании соответствующих органов или групп растений. Веламен особенно хорошо развит на воздушных корнях орхидей. Их можно видеть на нижней стороне плавающих листьев кубышки.
Растительная клетка
Для консервирования используют различные виды овощей, фруктов и ягод.
Все они обладают рядом свойств, характерных для сырья растительного происхождения. Вместе с тем имеются и существенные различия, зависящие от вида и сорта сырья, условий его выращивания, степени зрелости.
Растительная ткань состоит из клеток: паренхимных и прозенхимных.
Паренхимные клетки имеют округлую или многогранную форму. Размер таких клеток в любом сечении примерно одинаковый и большей частью колеблется от 10 до 60 мкм. Однако в клубнях и сочных плодах паренхимные клетки могут достигать и больших размеров — до 1 мм в сечении.
Прозенхимные клетки имеют удлиненную форму. Размеры их в поперечном сечении примерно такие же, как и паренхимных клеток, но длина иногда измеряется десятками миллиметров.
Ткань плодов и овощей состоит в основном из паренхимных клеток.
Прозенхимные клетки образуют преимущественно механические и проводящие ткани, свойственные стеблям растения.
Развившаяся клетка зрелых плодов состоит из тонкой эластичной оболочки, протопласта и вакуолей. В состав протопласта входят протоплазма, ядро и включения, к которым относятся пластиды, крахмальные зерна, растительные масла, а также кристаллы некоторых солей.
Оболочка клетки состоит из кристаллических частичек — мицелл — и имеет вид стекловидной прозрачной перепонки. Оболочка молодой клетки очень тонкая и образована целлюлозой. При дальнейшем развитии клетки оболочка увеличивается в размерах, в ней накапливаются протопектин, гемицеллюлозы, а иногда также кутин, суберин или лигнин. Нерастворимые в воде вещества, образующие оболочку, придают ей, а, следовательно, и клетке механическую прочность.
Кутин представляет собой воскообразное вещество, состоящее из смеси сложных эфиров высокомолекулярных одноатомных спиртов (например, октадецилового спирта — C18H37OH) и жирных кислот, в частности каприновой — CH3(Ch3)8COOH. Кутином покрыты внешние клетки кожицы некоторых плодов (яблоки, сливы) и клубней (картофель). Эти клетки образуют так называемую кутикулу, которая защищает сырье от действия микроорганизмов, а также от испарения влаги. Кутин менее эластичен, чем целлюлоза, и откладывается в виде неровных извилистых слоев, не имеющих прочной связи с остальными компонентами оболочки клетки.
Суберин — это жироподобное вещество, являющееся продуктом полимеризации насыщенных и ненасыщенных оксикислот жирного ряда. Суберин образует опробковевшую ткань, что наблюдается главным образом на корнях и стеблях. На плодах пропитанные суберином клетки появляются при заживлении механически поврежденной ткани. Суберин не пропускает ни воды, ни газов, и поэтому опробковевшие со всех сторон клетки отмирают.
Лигнин состоит из ароматических соединений, являющихся производными одно-, двух — и трехатомных фенолов. Он заполняет пустоты между мицеллами целлюлозы, образующими сетчатую структуру, вызывая одревеснение ткани. При этом жизненные функции клеток практически не нарушаются. Лигнин не увеличивает механической прочности клеток, но повышает их стойкость против микроорганизмов. Образование лигнина наблюдается преимущественно в проводящих и механических тканях растений.
Протоплазма представляет собой прозрачную студенистую массу, которая в молодой клетке заполняет все находящееся под оболочкой пространство. По мере созревания количество протоплазмы в клетке уменьшается. Вместо нее появляются и развиваются вакуоли с клеточным соком. В зрелой клетке протоплазма содержится в виде тонкого слоя, прилегающего непосредственно к оболочке, а также плазменных тяжей (нитей), пересекающих клетку в разных направлениях.
Химический состав протоплазмы непостоянный. В среднем она содержит 80% воды. Из остальных веществ большую часть (65%) составляют белки, которые, связывая часть воды, образуют структуру протоплазмы. Вода, связанная белками, называется гидратационной. Остальная вода находится в протоплазме в свободном состоянии.
Помимо белков, протоплазма содержит и другие азот
3.3. Основные ткани
Основные ткани составляют основную массу тела растения. Они состоят из живых, относительно мало специализированных клеток, чаще паренхимной формы, поэтому их часто называют паренхимными тканями, или паренхимой. В зависимости от выполняемой функции, различают несколько типов основных тканей.
Ассимиляционная ткань (хлорофиллоносная паренхима, хлоренхима) выполняет функцию фотосинтеза. Она располагается в основном в листьях и стеблях травянистых растений сразу за эпидермой. Клетки живые, тонкостенные, чаще паренхимной формы. 70-80% объема протопласта составляют хлоропласты. Характерно наличие межклетников, которые облегчают газообмен ( рис. 3.2).
Рис. 3.2. Поперечный срез листа красавки : 1 – клетки ассимиляционной ткани; 2 – клетки, заполненные кристаллическим песком кальция оксалата.
Запасающая паренхима служит местом отложения питательных веществ (крахмала, белков, жирных масел). Запасные питательные вещества могут откладываться в живых клетках любой ткани, но особенно ярко эта функция проявляется у специализированных запасающих тканей, хорошо развитых в семенах, корнях, подземных побегах (рис. 3.3.А ). Состоят запасающие ткани из живых тонкостенных клеток, чаще паренхимной формы.
Разновидностью запасающей ткани является водоносная паренхима, выполняющая функцию запасания воды. Она состоит из крупных живых тонкостенных клеток, как правило, паренхимной формы. Вода запасается в вакуолях за счет большого содержания слизей, обладающих высокой водоудерживающей способностью. Водоносная паренхима имеется в стеблях и листьях суккулентов (кактусы, агавы, алоэ), у многих растений солончаков (солерос, анабазис, саксаул), в листьях многих злаков. Много воды содержится в запасающих тканях луковиц и клубней.
Воздухоносная паренхима (аэренхима) выполняет функцию вентиляции, снабжая ткани и органы кислородом. Она хорошо развита в погруженных органах водных и болотных растений (кувшинка, кубышка, аир, вахта). Аэренхима состоит из живых клеток различной формы и крупных межклетников (рис. 3.3.Б ).
Рис. 3.3. Запасающая паренхима клубня картофеля ( A) и аэренхима стебля рдеста (Б): 1 – межклетник.
Механическая паренхима занимает промежуточное положение между основными и механическими тканями. Это живые паренхимные клетки со слегка утолщенной одревесневшей клеточной стенкой.
Неспециализированная паренхима (основная паренхима, неспецифическая паренхима) представляет собой живую паренхимную ткань без выраженной функции. Эта ткань всегда присутствует в теле растения, составляя его большую часть.
3.4. Покровные ткани
Покровные ткани располагаются на поверхности органов растений на границе с внешней средой. Они состоят из плотно сомкнутых клеток и защищают внутренние части растения от неблагоприятных внешних воздействий, излишнего испарения и иссушения, резкой перемены температуры, проникновения микроорганизмов, служат для газообмена и транспирации. В соответствии с происхождением из различных меристем выделяют первичные и вторичные покровные ткани.
К первичным покровным тканям относят: 1) ризодерму, или эпиблему и 2) эпидерму.
Ризодерма (эпиблема) – первичная однослойная поверхностная ткань корня. Образуется из протодермы – наружного слоя клеток апикальной меристемы корня. Основная функция ризодермы – всасывание, избирательное поглощение из почвы воды с растворенными в ней элементами минерального питания. Через ризодерму происходит выделение веществ, действующих на субстрат и преобразующих его. Клетки ризодермы тонкостенные, с вязкой цитоплазмой и большим количеством митохондрий (минеральные ионы поглощаются активно, с затратой энергии, против градиента концентрации). Характерной особенностью ризодермы является образование у части клеток корневых волосков – трубчатых выростов, в отличие от трихомов не отделенных стенкой от материнской клетки (рис. 3.4). Корневые волоски увеличивают поглощающую поверхность ризодермы в десять и более раз. Волоски имеют длину 1-2 (3) мм. Ризодерму часто рассматривают как всасывающую ткань.
Рис. 3.4. Кончик корня ожики многоцветковой: 1 – корневой волосок.
Эпидерма — первичная покровная ткань, образующаяся из протодермы конуса нарастания побега. Она покрывает листья, стебли травянистых и молодых побегов древесных растений, цветки, плоды и семена. Основная функция эпидермы – регуляция газообмена и транспирации (испарения воды живыми тканями). Кроме того, эпидерма выполняет целый ряд других функций. Она препятствует проникновению внутрь растения болезнетворных организмов, защищает внутренние ткани от механических повреждений и придает органам прочность. Через эпидерму могут выделяться наружу эфирные масла, вода, соли. Эпидерма может функционировать как всасывающая ткань. Она принимает участие в синтезе различных веществ, в восприятии раздражений, в движении листьев.
Эпидерма — сложная ткань, в ее состав входят морфологически различные типы клеток: 1) основные клетки эпидермы; 2) замыкающие и побочные клетки устьиц; 3) трихомы.
Основные клетки эпидермы – живые клетки таблитчатой формы. Вид клеток с поверхности различен (рис. 3.5). Клетки плотно сомкнуты, межклетники отсутствуют. Боковые стенки (перпендикулярные поверхности органа) часто извилистые, что повышает прочность их сцепления, реже прямые. Эпидермальные клетки осевых органов и листьев многих однодольных сильно вытянуты вдоль оси органа.
Рис. 3.5. Эпидерма листа различных растений (вид с поверхности): 1 — ирис; 2 — кукуруза; 3 – арбуз; 4 — буквица.
Наружные стенки клеток обычно толще остальных. Их внутренний, более мощный, слой состоит из целлюлозы и пектиновых веществ; наружный слой подвергается кутинизации. Поверх наружных стенок выделяется сплошной слой кутина, образующий защитную пленку – кутикулу. Помимо кутина в ее состав входят вкрапления воска, что еще больше снижает проницаемость кутикулы для воды и для газов. Воск может откладываться в кристаллической форме и на поверхности кутикулы в виде чешуек, палочек, трубочек и других структур, видимых только в электронный микроскоп. Этот сизый, легко стирающийся налет хорошо заметен на листьях капусты, плодах сливы, винограда. Мощность кутикулы, распределение в ней восков и кутина определяют химическую стойкость и проницаемость эпидермы для газов и растворов. В условиях засушливого климата у растений развивается более толстая кутикула. У растений, погруженных в воду, кутикула отсутствует.
Клетки эпидермы имеют живой протопласт, обычно с хорошо развитой эндоплазматической сетью и аппаратом Гольджи. У большинства видов растений в цитоплазме присутствуют лейкопласты. У водных растений, папоротников, обитателей тенистых мест (гибискус) встречаются редкие хлоропласты. Эпидерма чаще всего состоит из одного слоя клеток. Редко встречается двух- или многослойная эпидерма, преимущественно у тропических растений, живущих в условиях непостоянной обеспеченности водой (бегонии, пеперомии, фикусы). Нижние слои многослойной эпидермы функционируют как водозапасающая ткань. У некоторых растений клеточные стенки могут пропитываться кремнеземом (хвощи, злаки, осоки) или содержать слизи (семена льна, айвы, подорожников).
Устьица – образования для регуляции транспирации и газообмена. Устьице состоит из двух замыкающих клеток бобовидной формы, между которыми находится устьичная щель, которая может расширяться и сужаться. Под щелью располагается крупный межклетник – подустьичная полость. Клетки эпидермы, примыкающие к замыкающим клеткам, часто отличаются от остальных клеток, и тогда их называют побочными, или околоустьичными клетками (рис. 3.6 ). Они участвуют в движении замыкающих клеток.
Рис. 3.6. Схема строения устьица.
Замыкающие и побочные клетки образуют устьичный аппарат. В зависимости от числа побочных клеток и их расположения относительно устьичной щели выделяют несколько типов устьичного аппарата (рис. 3.7 ). В фармакогнозии типы устьичного аппарата используются для диагностики лекарственного растительного сырья.
Рис. 3.7. Типы устьичного аппарата : 1 – аномоцитный; 2 – диацитный; 3 – парацитный; 4 – анизоцитный; 5 – тетрацитный; 5 – энциклоцитный.
Аномоцитный тип устьичного аппарата обычен для всех групп растений, исключая хвощи. Побочные клетки в этом случае не отличаются от остальных клеток эпидермы. Диацитный тип характеризуется двумя побочными клетками, которые располагаются перпендикулярно устьичной щели. Этот тип обнаружен у некоторых цветковых растений, в частности, у большинства губоцветных (мята, шалфей, чабрец, душица) и гвоздичных. При парацитном типе две побочные клетки располагаются параллельно замыкающим и устьичной щели. Он найден у папоротников, хвощей и ряда цветковых растений. Анизоцитный тип обнаружен только у цветковых растений, в частности, он встречается у крестоцветных (пастушья сумка, желтушник) и пасленовых (белена, дурман, красавка). В этом случае замыкающие клетки окружены тремя побочными, одна из которых заметно крупнее или мельче остальных. Тетрацитным типом устьичного аппарата характеризуются преимущественно однодольные. При энциклоцитном типе побочные клетки образуют узкое кольцо вокруг замыкающих клеток. Подобная структура найдена у папоротников, голосеменных и некоторых цветковых.
Механизм движения замыкающих клеток основан на том, что стенки их утолщены неравномерно, поэтому форма клеток меняется при изменении их объема. Изменение объема клеток устьичного аппарата происходит вследствие изменения осмотического давления. Увеличение давления происходит за счет активного поступления из соседних клеток ионов калия, а также за счет повышения концентрации сахаров, образующихся в процессе фотосинтеза. За счет поступления воды объем вакуоли увеличивается, тургорное давление растет, и устьичная щель открывается. Отток ионов совершается пассивно, вода выходит из замыкающих клеток, их объем уменьшается, и устьичная щель закрывается. У большинства растений устьица открываются в светлое время суток и закрываются ночью. Это связано с тем, что фотосинтез протекает только на свету, и для него необходим приток из атмосферы углекислого газа.
Число и распределение устьиц очень варьируют в зависимости от вида растения и экологических условий. У большинства растений их число составляет 100-700 на 1мм2 поверхности листа. С помощью устьиц эпидерма эффективно регулирует газообмен и транспирацию. Если устьица полностью открыты, то транспирация идет с такой же скоростью, как если бы эпидермы не было вовсе (согласно закону Дальтона, при одной и той же суммарной площади отверстий скорость испарения тем выше, чем больше число отверстий). При закрытых устьицах транспирация резко снижается и фактически может идти только через кутикулу.
У многих растений эпидерма образует наружные одно- или многоклеточные выросты различной формы – трихомы. Трихомы отличаются крайним разнообразием, оставаясь вместе с тем вполне устойчивыми и типичными для определенных видов, родов и даже семейств. Поэтому признаки трихомов широко используются в систематике растений и в фармакогнозии в качестве диагностических.
Трихомы делятся на: 1) кроющие и 2) железистые. Железистые трихомы образуют вещества, которые рассматриваются как выделения. Они будут рассмотрены в разделе, посвященном выделительным тканям.
Кроющие трихомы имеют вид простых, разветвленных или звездчатых волосков, одно- или многоклеточных (рис. 3.8 ). Кроющие трихомы могут длительное время оставаться живыми, но чаще они быстро отмирают и заполняются воздухом.
Густой слой волосков отражает часть солнечных лучей и уменьшает нагрев, создает затишное пространство около эпидермы, что в совокупности снижает транспирацию. Часто волоски образуют покров только там, где располагаются устьица, например на нижней стороне листьев мать-и-мачехи, багульника. Жесткие, колючие волоски защищают растения от поедания животными, сосочки на лепестках привлекают насекомых.
Рис. 3.8. Кроющие трихомы : 1-3 – простые одноклеточные, 4 – простой многоклеточный, 5 – ветвистый многоклеточный, 6 – простой двурогий, 7,8 – звездчатый (в плане и на поперечном разрезе листа).
От трихомов, образующихся только из эпидермальных клеток, следует отличать эмергенцы, в формировании которых принимают участие и более глубоко расположенные ткани. К ним относят шипы розы, малины, ежевики, покрывающие черешки листьев и молодые побеги.
К вторичным покровным тканям относятся: 1) перидерма и 2) корка, или ритидом.
Перидерма – сложная многослойная покровная ткань, которая приходит на смену первичным покровным тканям – ризодерме и эпидерме. Перидерма покрывает корни вторичного строения и стебли многолетних побегов. Она может возникнуть и в результате залечивания поврежденных тканей раневой меристемой.
Перидерма состоит из трех комплексов клеток, различных по строению и функциям. Это: 1) феллема, или пробка, выполняющая главные защитные функции; 2) феллоген, или пробковый камбий, за счет работы которого образуется перидерма в целом; 3) феллодерма, или пробковая паренхима, выполняющая функцию питания феллогена ( рис. 3.9).
Рис. 3.9. Строение перидермы стебля бузины .
Феллема (пробка) состоит из нескольких слоев таблитчатых клеток, расположенных плотно, без межклетников. Вторичные клеточные стенки состоят из чередующихся слоев суберина и воска, что делает их непроницаемыми для воды и газов. Клетки пробки мертвые, они не имеют протопласта и заполнены воздухом. В полости клеток могут также откладываться вещества, повышающие защитные свойства пробки.
Феллоген (пробковый камбий) – вторичная латеральная меристема. Это один слой меристематических клеток, откладывающих клетки пробки наружу и клетки феллодермы внутрь органа. Феллодерма (пробковая паренхима) относится к основным тканям и состоит из живых паренхимных клеток. Однако часто феллоген работает односторонне, откладывая только пробку, а феллодерма остается однослойной (рис. 3.9).
Главная функция пробки – защита от потери влаги. Кроме того, пробка предохраняет растение от проникновения болезнетворных организмов, а также дает механическую защиту стволам и ветвям деревьев, а феллоген залечивает нанесенные повреждения, образуя новые слои пробки. Поскольку клетки пробки заполнены воздухом, пробковый футляр обладает малой теплопроводностью и хорошо предохраняет от резких колебаний температуры.
У большинства деревьев и кустарников феллоген закладывается в однолетних побегах уже в середине лета. Чаще всего он возникает из паренхимных клеток, лежащих сразу под эпидермой (рис. 3.9 ). Иногда феллоген образуется в более глубоких слоях коры (смородина, малина). Редко эпидермальные клетки, делясь, превращаются в феллоген (ива, айва, олеандр).
Газообмен и транспирация в органах, покрытых перидермой, происходят через чечевички (рис. 3.10 ). В местах чечевичек пробковые слои разорваны и чередуются с паренхимными клетками, рыхло соединенными между собой. По межклетникам этой выполняющей ткани циркулируют газы. Феллоген подстилает выполняющую ткань и, по мере ее отмирания, дополняет новыми слоями. С наступлением холодного сезона феллоген откладывает под выполняющей тканью замыкающий слой, состоящий из клеток пробки. Весной этот слой под напором новых клеток разрывается. В замыкающих слоях имеются небольшие межклетники, так что живые ткани ветвей деревьев даже зимой не отграничены наглухо от окружающей среды.
Рис. 3.10. Строение чечевички бузины на поперечном разрезе.
На молодых побегах чечевички выглядят как небольшие бугорки. По мере утолщения ветвей их форма меняется. У березы они растягиваются по окружности ствола и образуют характерный рисунок из черных черточек на белом фоне. У осины чечевички принимают форму ромбов.
У большинства древесных растений на смену гладкой перидерме приходит трещиноватая корка (ритидом) . У сосны это происходит на 8-10-м году, у дуба – в 25-30 лет, у граба – в 50 лет. Лишь у некоторых деревьев (осина, бук, платан, эвкалипт) корка вообще не образуется.
Корка возникает в результате многократного заложения новых прослоек перидермы во все более глубоких слоях коры. Живые клетки, заключенные между этими прослойками, погибают. Таким образом, корка состоит из чередующихся слоев пробки и прочих отмерших тканей коры (рис. 3.11 ).
Рис. 3.11. Корка дуба на поперечном разрезе .
Мертвые ткани корки не могут растягиваться, следуя за утолщением ствола, поэтому на стволе появляются трещины, не доходящие, однако, до глубинных живых тканей. Граница между перидермой и коркой внешне заметна по появлению этих трещин, особенно ясна эта граница у березы, у которой белая береста (перидерма) сменяется черной трещиноватой коркой. Толстая корка надежно предохраняет стволы деревьев от механических повреждений, лесных пожаров, резкой смены температур.
Красильникова — Анатомия растений — Стр 2
Полисахариды — сложные углеводы. Их молекулы состоят из нескольких (двух, трех) или многих остатков моносахаридов. Первые из них получили название олигосахариды (сахароза, мальтоза), вторые — высшие полисахариды (крахмал, клетчатка, полуклетчатка, пектины, инулин и др.). Высшие полисахариды — высокомолекулярные вещества. Их основные функции — запасная (крахмал, инулин) и опорная (клетчатка, полуклетчатка, пектины).
В протопласте также содержится много других органических веществ: витамины, аминокислоты, нуклеотиды, регуляторы роста, органические кислоты и т. д.
Минеральные (неорганические) вещества обычно содержатся в про-
топласте в виде солей или в соединении с органическими веществами (белками, аминокислотами, липидами, углеводами и др.). Минеральные вещества, которые есть в протопласте в достаточно больших количествах, называют макроэлементами. Это — фосфор, калий, кальций, сера и магний. Других минеральных веществ — микроэлементов (железо, медь, цинк, марганец, бор, кобальт, натрий, хлор и др.) очень мало, но они необходимы для нормальной жизнедеятельности клеток.
Цитоплазма
Часть протопласта растительной клетки, за исключением ядра, сначала получила название «протоплазма», его ввел Я. Пуркине в 1840 г. Позже Р. Келликер в 1856 г. предложил другое название — «цитоплазма». Они равнозначны, но в настоящее время более распространен термин «цитоплазма».
Ученые всегда интересовались структурой цитоплазмы. Вначале ее считали однородной и бесструктурной. Затем по мере усовершенствования микроскопической техники стали применять фиксацию и окраску препаратов. Методы были еще несовершенны: фиксация приводила к коагуляции коллоидов цитоплазмы, а красители неравномерно адсорбировались на частицах осадка. При рассмотрении таких препаратов под микроскопом была видна определенная картина расположения окрашенных частиц. На основе увиденного ученые XIX в. создавали различные теории строения цитоплазмы. Таких теорий в то время было много. Вот некоторые их них.
Нитчатая теория Фромана утверждала, что цитоплазма представляет собой массу переплетенных нитей. Гранулярная теория и ее автор Альтман предполагали, что цитоплазма состоит из частиц — гранул различной величины. Губчатая, или сетчатая, теория английского микробиолога А. Флеминга постулировала, что цитоплазма представляет собой ячеистую сеть, напоминающую губку. Бючли в своей теории утверждал, что цитоплазма имеет ячеистое строение. Он даже пытался создать модель цитоплазмы: растирал поташ с оливковым маслом, а за-
ПАРЕНХИМА • Большая российская энциклопедия
-
В книжной версии
Том 25. Москва, 2014, стр. 323
-
Скопировать библиографическую ссылку:
Авторы: А. К. Тимонин
ПАРЕНХИ́МА (греч. παρέγχυμα – долитое, добавленное, от παρεγχέω – доливать, добавлять), 1) простая ткань растений из рыхло расположенных тонкостенных, обычно неодревесневающих клеток, имеющих форму более или менее правильных многогранников со скруглёнными рёбрами. П. участвует в формировании коры, стелы стеблей и корней, мезофилла листьев, мякоти плодов. Обеспечивает целостность тела растения, располагаясь между массивами тканей др. типов (основная П.), выполняет функции запасания воды либо ассимилятов (запасающая П.), выделения (соленакапливающая П. галосуккулентов). Иногда разновидностью П. считают специализиров. ткань – хлоренхиму, в постенном слое клеток которой присутствуют хлоропласты – пластиды, содержащие хлорофилл и др. вспомогат. пигменты фотосинтеза. 2) Компонент сложных (комплексных) тканей флоэмы и ксилемы, в которых П. составляет продольные (тяжевая П.) или радиальные (лучевая П.) тяжи клеток призматич. формы; участвует в регуляции транспорта веществ, резервировании углеводов (крахмалоносная П.), выделении избыточного кальция (кристаллоносная П.). В определённых участках тела растения паренхимные клетки, дедифференцируясь, образуют клетки вторичных меристем – феллогена и камбия. Благодаря способности к делению зрелые паренхимные клетки играют важную роль в заживлении ран растений (на месте поражения развивается особая раневая меристема, производные которой затягивают повреждение).
Основные ткани, подготовка к ЕГЭ по биологии
«Грандиозные вещи делаются грандиозными средствами. Одна природа делает великое даром» — Александр И. Герцен
Основные ткани называются так потому, что они составляют основную (бо́льшую) часть массы растения. Им принадлежат важнейшие функции, без которых жизнь растения совершенно невозможна. В них идет газообмен с окружающей средой, фотосинтез, запасание питательных веществ, запасание воды. Они состоят из живых паренхиматозных клеток, образованных из первичной меристемы — верхушечной (апикальной). Начнем изучение с классификации основных тканей.
Ассимиляционная ткань (хлоренхима)
Ассимиляционная — синтезирующая. За счет содержания хлорофилла в данной ткани, здесь активно идет процесс фотосинтеза, хлоропласты в ее клетках выстроены вдоль стенок одним слоем, не затеняя друг друга, подобно солнечным батареям. Наиболее яркий пример местоположения этой ткани — столбчатая ткань мякоти листа (палисадная ткань, от франц. palissade — частокол, загородка), или мезофилл — мягкая ткань, заключенная между двумя слоями эпидермиса в листьях растений.
Хлоренхима расположена непосредственно под эпидермисом, это обеспечивает ее хорошее освещение и газообмен с окружающей средой. Она встречается в надземных органах растений, таких как листья, молодые побеги. Но это не исключает возможность ее возникновения на освещенных корнях, к примеру, в корнях водных растений, воздушных корнях.
Воздухоносная ткань (аэренхима)
Главная ее функция — газообмен. Отличается, прежде всего, наличием межклетников — тканевых пространств, служащих вместилищем для газов. Сквозь устьица воздух межклетников путем диффузии уравнивается по составу с атмосферным воздухом. В межклетниках из атмосферного воздуха клетки растения поглощают углекислый газ и выделяют в полость кислород, который затем поступает в окружающую среду.
Запомните одно из стратегически важных расположений этой ткани — губчатая ткань листа.
У аэренхимы имеется еще одна значимая функция — уменьшение удельного веса растения. Вообразите внутреннюю среду растения, сплошь забитую клеточной массой без всяких промежутков и полостей. Если бы не было аэренхимы, растения, оказавшись тяжелее воды — тонули и опускались на дно, не имея достаточной прочности механической ткани.
Благодаря наличию межклетников в ткани ее удельный вес уменьшается, и она замечательно держится на плаву.
А мы с вами имеем возможность (благодаря аэренхиме! 🙂 получить истинное эстетическое удовольствие от цветущих кувшинок и наслаждаться видом многих других водных растений.
В листьях (на картинке ниже) встречаются клетки с друзой — представляют собой внутриклеточные сростки кристаллов в вакуолях растительных клеток.
Запасающая ткань
Главные функции: запасание и хранение питательных веществ: белков, жиров и углеводов. Преобладает в плодах, сердцевине, луковицах и семенах, клубнях и корневищах. Отдельно отметим, что запасным питательным веществом растений является крахмал.
На рисунке ниже изображен поперечный разрез зоны всасывания корня, видны корневые волоски ризодермы (эпиблемы).
Водоносная паренхима
Клетки этой ткани отличаются большим запасом в вакуолях слизистых веществ, удерживающих влагу. Таким образом, эта ткань способствует удержанию и запасанию воды. Она хорошо развита у растений, приспособленных к жизни в засушливых местах с сухим климатом. Такие растения получили название — суккуле́нты от лат. succulentus, «сочный», к ним относятся алоэ, кактусы. Как правило, они произрастают в местах с засушливым климатом.
Водоносная паренхима при наступлении засухи постепенно отдает свои запасы воды другим, жизненно важным для растения тканям, в первую очередь хлорофиллоносной паренхиме.
©Беллевич Юрий Сергеевич
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.