Общее количество белка в плазме крови составляет: Белки плазмы крови » СтудИзба – Белок в крови: норма, повышен, понижен, причины

Белки плазмы

Белки плазмы

 

Общее количество белков в плазме составляет 65-85 г / л, это наиболее концентрированный белковый и солевой раствор организма. С возрастом количество белков в плазме крови человека уменьшается до 60-67 г / л.

 

 

Белки плазмы крови — это генетически детерминирована гетерогенная система. В плазме обнаружено и идентифицировано более 100 белков, которые различаются по физико-химическим и функциональным свойствам. Среди них есть проферменте и ферменты, ингибиторы ферментов, гормоны, факторы коагуляции и антикоагулянты, транспортные белки, антитела, антитоксины и др..

 

Основными группами белков плазмы: альбумины (35-60 г / л), глобулины (25-35 г / л) и фибриноген (2-7 г / л). С помощью электрофореза в сыворотке было обнаружено пять главных фракций белков. Их относительные количества следующие: альбумины (54-58%), а1-глобулины (6-7%), а2-глобулины (8-9%), ß-глобулины (13-14%) и у-глобулины (11-12 %).

 

Первым электрофоретической методом, который использовался для распределения и идентификации белков, был метод электрофореза с подвижным рубежом. Электрофорез на бумаге дает картину распределения, подобную той, которую получают при использовании метода электрофореза с подвижным рубежом, но метод электрофореза на бумаге гораздо проще и, как правило, используется в клинических лабораториях. Методом электрофореза в крахмальном геле и методом имуноелектрофорезу обнаруживают около 30 и больше белков плазмы.

 

Вследствие имуноелектрофорезу белки разделяются не только по электрофоретической подвижностью, но и за их иммунологическими свойствами. Сначала проводят электрофорез на пластинах агаровой геля, затем — иммунологическую идентификацию полос. Для этого антисыворотки к белков плазмы помещают в длинную канавку, параллельную направлению электрофореза. Источником антител является сыворотка животных (лошадей, коз), иммунизированных к белкам плазмы.

 

В зонах контакта диффундирующих через агар белков, разделенных электрофорезом, и специфической антисыворотки образуются линии преципитации. Положение линий преципитации определяется электрофоретической подвижностью, скоростью диффузии, серологической специфичностью каждого из белков.

 

Экспериментально установлено, что альбумины, фибриноген и большинство а-и ß-глобулинов продуцируются, главным образом, печенью. Так, в печени человека ежедневно синтезируется 10-16 г альбуминов, то есть в среднем 150-200 мг на 1 кг массы тела. Поэтому в случае заболеваний печени наблюдается значительное снижение содержания альбуминов и некоторых глобулинов в крови. Синтез у-глобулинов проходит преимущественно в селезенке, лимфатических узлах и костном мозге.

 

Альбумины. Молекулярная масса альбуминов 69 000. Это наиболее высокодисперсные белки плазмы крови. Молекула альбумина образована полипептидной цепи, состоящей примерно из 580 остатков аминокислот, и имеет »17 дисульфидных связей. Методами электрофореза установлено, что альбумины — это гетерогенные белки, состоящие из нескольких (от 3 до 5) фракций. Кроме альбуминов в печени синтезируются преальбумины, отличающиеся от альбуминов меньшей молекулярной массой (61 000).

 

Главные функции альбуминов — участие в осмотической регуляции и транспортная функция.

 

Отек и шок — два самых распространенных синдромы, связанные с изменениями концентрации белков плазмы и нарушением водного баланса.

 

Благодаря большой плотности электрических зарядов и малой молекулярной массе молекулы альбумина имеют большую электрофоретической подвижностью и хорошую растворимость. Гидратационные слой создается вокруг них, обеспечивает 75-80% всего онкотического давления, обусловленного белками плазмы. В случае уменьшения концентрации белков плазмы в 55-50 г / л, в том числе альбуминов до 22-25 г / л, например во время голодания, уменьшается связывание воды плазмой, является одной из важных причин перехода воды в ткани и образование отека. Лишь 40% альбуминов имеющиеся в кровяном русле, остальные находятся в составе внеклеточной тканевой жидкости, главным образом, мышц, кожи и кишечника. Около 5% альбуминов за 1 час выходят из кровяного русла и возвращаются с лимфой через грудной лимфатический проток в систему кровообращения.

 

Наряду с участием в регуляции онкотического давления, преальбумины и альбумины играют важную роль, участвуя в транспорте различных веществ, большинство из которых плохо растворимые в воде. Альбумины необходимы для нормального метаболизма липидов. Особенно важна функция альбуминов — перенос свободных жирных кислот из печени в периферические ткани. Альбумины связывают также билирубин, обеспечивая его перенос в печени, где последний соединяется с глюкуроновой кислотой и выводится с желчью. Концентрация в плазме Ca2 +, стероидных гормонов, триптофана и других веществ регулируется некоторой степени вследствие связывания их с альбуминами.

 

Наконец, многие лекарственные препараты, такие как сульфаниламиды, антибиотики, салицилаты и т.д., транспортируются, протеидизуючись альбуминами.

 

Таким образом, альбумины — это полифункциональная система, поскольку, кроме резервной и пластической функций, они буферные свойства, поддерживающие постоянство онкотического давления, осуществляют транспортные и дезинтоксикационные функции.

 

Глобулины. Молекулярная масса глобулинов в среднем составляет 160 000-180 000. В зависимости от условий электрофореза выделено пять и более фракций глобулинов (см. табл. 20), а методом имуноелект-рофорезу — более 30.

 

Фракции а1-глобулинов и а2-глобулинов характеризуются значительным содержанием углеводов, среди которых преобладают гексозы, поменьше гексозамина и еще меньше сиаловых кислот и фруктозы. Наибольшее содержание углеводов в гаптоглобина, который содержит около 95 молей углеводов на 1 моль гликопротеина. Он входит во фракцию а2-глобулинов и образует с гемоглобином специфические стабильные комплексы. Эти комплексы образуются in vivo в результате внутрисосудистого гемолиза эритроцитов. Вследствие высокой молекулярной массы комплексы не могут экскретировать почками, это, с одной стороны, предотвращает выделение железа с мочой, а с другой — защищает почки от «повреждения» гемоглобином. Комплексы гемоглобина с гаптоглобина разрушаются ретикулоэндотелиальными клетками, после чего глобин испытывает расщепление, гем вследствие распада экскретируется в виде желчных пигментов, а железо может использоваться снова для синтеза гема. У больных различными формами гемолитической анемии наблюдается низкий уровень гаптоглобина.

 

В сыворотке крови человека найден белок с молекулярной массой около 1 млн. Он характеризуется высоким содержанием фосфора и углеводов и относительно небольшим количеством азота (12,5-14,2%), что позволяет отнести его к гликопротеинов. Этот белок при наличии комплемента и солей магния способен повышать устойчивость организма к инфекциям, а также лучевой болезни. Благодаря способности этого гликопротеина разрушать бактерии его назвали пропердина (perdere — разрушать, лат.). Поскольку пропердин активно действует в комплексе с комплементом и солями магния, весь комплекс назвали пропердиновый системой.

 

ß-глобулинов фракция состоит из различных белков, включая ли-попротеины. Одним из компонентов этой фракции является белок трансферрин, который участвует в регуляции концентрации свободного железа в плазме, предотвращая избыточное накопление железа в тканях и потере его с мочой. Он также взаимодействует с медью и цинком. Значительное повышение концентрации трансферрина наблюдается в плазме беременных женщин и больных с недостаточностью железа.

 

В целом роль глобулинов связана с защитными реакциями организма. Изучение природы антител показало, что они глобулинами, к тому же многие из них относятся к у-глобулинов и называются иммуноглобулинами. Известно пять основных классов иммуноглобулинов, которые отличаются некоторыми особенностями структуры и биологическими свойствами.

 

у-Глобулины широко используются в практике здравоохранения, особенно в случае многих инфекционных заболеваниях. С помощью электрофореза и иммунобиологических исследований выявлено, что во фракцию у-глобулинов входит более 20 антител.

 

Большинство белков в плазме имеющиеся в виде комплексов, биологическое значение которых зависит как от белка, так и от небелкового компонента, с которым он комплексируется.

 

Липиды крови, в том числе триацилглицеринов, фосфолипиды, не-этерифицированные жирные кислоты (НЭЖК), холестерин, стероидные гормоны, некоторые липовитамины т.д., имеющиеся в растворенном состоянии благодаря сочетанию их с белками плазмы в виде комплексов — липопротеинов (см. Структура и функции сложных белков).

 

Вследствие многих патологических состояний может изменяться количественное соотношение между различными белковыми фракциями крови, даже при отсутствии изменений в содержании общего белка — так называемая дис-протеинемия. Иногда в крови появляются необычные белковые фракции или отдельные белки, которых нет в норме (парапротеинемия). Такими белками, например, С-реактивный белок, криоглобулины т.д..

 

Диспротеинемия и парапротеинемия — это, например, признаки лучевой болезни.

 

Выявлен ряд заболеваний, в том числе наследственных, связанных с недостаточным синтезом тех или иных белков крови. Например, во многих новорожденных наблюдается гипо-и агаммаглобулинемия, что сопровождается снижением иммунитета. Встречается также приобретенная гипогаммаглобулинемия. В этих случаях лечение заключается в систематическом введении иммунных у-глобулинов.

 

С-реактивный белок содержится в плазме взрослого человека в концентрациях менее 1 мг/100 мл. Однако его концентрация значительно увеличивается после острых инфекций. Название этого белка связана с его способностью образовывать преципитаты с полисахаридами группы С пневмококков в присутствии Ca2 +. Допускают, что этот белок способствует фагоцитозу.

 

Криоглобулины — белки сыворотки, которые редко встречаются и имеющие редкое свойство спонтанно выпадать в осадок, образовывать гель или даже кристаллизоваться при охлаждении сыворотки. Появляются криоглобулины у больных миеломой и у больных ревматическим артритом. Эти белки отнесены к у-глобулинов. Выяснено, что один из криоглобулинов оказался идентичным гликопротеина фибронектина, который связан с поверхностью фибробластов. Этот белок широко распространен в соединительной ткани, входя в состав миофибрилл соединительной ткани. Хотя возможная роль фибронектина в процессе свертывания крови окончательно не установлена, известно, что образование поперечных связей между молекулами этого белка катализируется активированным фактором ХИИИ (а) свертывающей системы крови.

 

Фибриноген — обладает свойствами глобулинов и вследствие электрофореза находится между фракциями ß-и у-глобулинов. Молекулярная масса фибриногена составляет 330 000-340 000.

 

Молекула фибриногена содержит шесть полипептидных цепей и является диммером, который состоит из трех пар полипептидных цепей, связанных дисульфидными мостиками. Фибриноген — это гликопротеин, в состав которого входит галактоза, манноза, гексозамины и сиаловые кислоты. Эти компоненты играют большую роль при преобразовании фибриногена в фибрин.

 

Содержание фибриногена в крови здоровых людей в среднем составляет 3,0-3,3 г / л. Его концентрация повышается в период беременности, а также при заболеваниях воспалительного характера, при деструктивных процессов, злокачественных новообразований, туберкулеза и других патологических состояний. Снижение содержания фибриногена наблюдается вследствие заболеваний печени, отравление фосфором, фосфорорганических соединениями и другими токсичными веществами.

 

Фибриноген — белок, который быстро восстанавливается, период его распада от 3 до 8 суток.

 

Наряду с плазмоспецифичнимы белками крови, в ней присутствуют соединения белковой природы, которые попадают из других тканей и органов. К последним относятся гормоны белковой природы: инсулин и глюкагон, го-надо-и тиреотропного гормона гипофиза и др.. Постоянной составной частью крови является ферменты. Ферменты, присутствующие в плазме, освобождаются из клеток крови и других тканей в результате естественного лизиса последних. Большинство ферментов плазмы не выполняют метаболических функций, за исключением ферментов, участвующих в свертывании крови и функционирующих в системе комплемента.

 

Вместе с плазмоспецифичнимы ферментами в крови содержится ряд органоспецифических ферментов, активность которых является показателем некоторых патологических состояний. Так, уровень сывороточной амилазы повышается при острых панкреатитов, в случае рака простаты. Значительно повышается активность кислой фосфатазы вследствие воспаления, она снижается при эффективной терапии. В случае заболеваний костной ткани повышается активность щелочной фосфатазы, которая определяется при рН 9.

 

Установлено, что уровень АсАТ, лактатдегидрогеназы и некоторых других ферментов в плазме имеет определенное диагностическое значение при поражении миокарда и может служить прогностическим тестом при терапии заболеваний сердца. В случае заболевания печени также происходит повышение уровня этих и некоторых других ферментов, например альдолазы.

 

В целом индивидуальных белков в крови насчитывается несколько сотен, однако не все они идентифицированы, не установлено их структуру и биологические функции.


4.1. Белок плазмы крови и его фракции. Карманный справочник медицинских анализов

4.1. Белок плазмы крови и его фракции

Кровь состоит из жидкой части и форменных элементов – клеток крови. Если выпустить кровь из сосуда в сухую пробирку, то через несколько минут в ней образуется сгусток темно-красного цвета, состоящий из нитей фибрина. Светло-желтая жидкость над сгустком – сыворотка. Если кровь смешать с консервирующим раствором и дать отстояться или подвергнуть центрифугированию, то она разделится на два основных слоя: нижний – красного цвета – осадок из форменных элементов (эритроцитов, лейкоцитов, тромбоцитов) и верхний – прозрачная желтоватая жидкость – плазма. Сыворотка отличается от плазмы отсутствием в ней белка фибриногена, перешедшего в сгусток крови.

Кровь на 55 % состоит из плазмы и на 45 % – из форменных элементов, которые находятся в ней во взвешенном состоянии.

Плазма – это сложная биологическая среда, которая содержит 92 % воды, 7 % белка и 1 % жиров, углеводов и минеральных солей.

Белки плазмы (сыворотки) крови представляют собой высокомолекулярные азотсодержащие соединения. Они имеют сложное строение, в их состав входит более 20 аминокислот. Последние получили свое название благодаря наличию аминных групп (Nh3) и карбоксильных (кислотных) групп (COOH). Аминокислоты обладают свойствами как кислот, так и оснований и могут вступать во взаимодействие с различными соединениями.

Аминокислоты, соединяясь друг с другом, образуют крупные молекулы различных белков. Организм содержит более 100 тысяч видов различных белковых молекул. По форме они могут быть разделены на фибриллярные и глобулярные. Фибриллярные белки имеют удлиненную, нитевидную форму; длина молекул в десятки и сотни раз превышает их диаметр. Молекулы глобулярных белков имеют форму шара (комочка), длина их превышает диаметр не более чем в 3-10 раз. Имеются и переходные формы.

В состав белков входят: углерод (50,654,6 %), кислород (21,5-23,5 %), водород (6,57,3 %), азот (15–16 %).

Кроме того, в состав белков входят также в небольших количествах сера, фосфор, медь, железо и некоторые другие элементы.

Химические свойства белков во многом подобны аминокислотам. Молекула белка, так же как и молекула аминокислоты, содержит по меньшей мере, одну свободную аминогруппу и одну карбоксильную группу. Поскольку в молекулу белка входит огромное количество аминокислот, таких «свободных групп» очень много. Благодаря наличию свойств кислот и оснований белки могут вступать в самые разнообразные химические реакции с самыми различными веществами, выполняя свои многочисленные функции в организме.

Белки условно делят на простые и сложные. Простыми называют белки, которые состоят только из аминокислот. К ним относят протамин, гистоны, альбумины, глобулины и ряд других.

При распаде сложных белков наряду с аминокислотами образуются другие соединения: нуклеиновые кислоты, фосфорная кислота, углеводы и т. д. К группе сложных белков относят нуклеопротеиды, хромопротеиды, фосфопротеиды, глюкопротеиды, липопротеиды и ряд белков – ферментов, содержащих разные простетические (небелковые) группы.

Белки могут отдавать или получать электрический заряд, становясь при этом заряженными положительно или отрицательно. Если это происходит одновременно, молекула белка становится электронейтральной.

Физико-химические свойства белков определяют их гидрофильность – способность удерживать воду, создавая коллоидный раствор.

Кислотная группа (СООН) способна связать четыре, аминная NН2) – три молекулы воды.

Каждая молекула белка окружена плотной собственной водной оболочкой, прочно фиксированной на ее поверхности.

Сила, с которой белки плазмы притягивают к себе воду, называют коллоидно-осмотическим, или онкотическим давлением. Оно равно 23–28 мм рт. ст.

При уменьшении количества белков или снижении их гидрофильности в плазме образуется избыток «свободной» воды, повышается гидростатическое давление в мельчайших сосудах (капиллярах) и вода начинает просачиваться сквозь стенки капилляров в ткани. Образуются онкотические (то есть зависящие от количества и свойств белков) отеки. Возникновение отеков связано и со многими другими причинами.

Кроме активного участия в водном обмене белки плазмы крови выполняют еще ряд важнейших функций. Они участвуют в процессе свертывания крови (см. раздел 3).

Обладая множеством полярных диссоциирующих боковых цепей, белки также способны связывать и транспортировать различные биологические вещества. Являясь одной из важнейших буферных систем крови, белки поддерживают постоянство гомеостаза – кислотно-основное состояние (КОС) крови (см. раздел 6). Белки плазмы защищают организм от проникновения различных чужеродных элементов, в том числе белков.

В клинической практике определяют общее содержание белка в плазме крови и его фракции.

Общее количество белка в плазме крови составляет 65–85 г/л. В сыворотке крови белка на 2–4 г/л меньше, чем в плазме, из-за отсутствия фибриногена.

Общее количество белка может быть пониженным (гипопротеинемия) или повышенным (гиперпротеинемия).

Гипопротеинемия возникает вследствие:

• недостаточного поступления белка в организм;

• повышенной потери белка;

• нарушения образования белка.

Недостаточное поступление белка может являться следствием длительного голодания, безбелковой диеты, нарушения деятельности желудочно-кишечного тракта. Значительная потеря белка происходит при острых и хронических кровотечениях, злокачественных новообразованиях. Выраженная гипопротеинемия – постоянный симптом нефротического синдрома, наблюдающегося при многих заболеваниях почек и связанного с выделением с мочой большого количества белка. Нарушение образования белка возможно при недостаточности функции печени (гепатиты, циррозы, дистрофии печени).

Гиперпротеинемия как правило развивается из-за дегидратации (обезвоживания) – потери части внутрисосудистой жидкости. Это происходит при перегревании организма, обширных ожогах, тяжелых травмах, некоторых заболеваниях (холере). Гиперпротеинемия наблюдается при миеломной болезни – тяжелом недуге с разрастанием плазматических клеток, продуцирующих парапротеины.

Состав белков плазмы крови чрезвычайно разнообразен.

Современными методами исследования удалось идентифицировать более 100 различных белков плазмы, большинство из них выделено в чистом виде и охарактеризовано. Наиболее простые белки – альбумины, глобулины и фибриноген – находятся в плазме в больших количествах, остальные – в ничтожно малых.

Различия белков по физико-химическим свойствам, аминокислотному составу позволили разделить их на отдельные фракции, обладающие специфическими биологическими свойствами. Наиболее точно разделение можно осуществить в электрическом поле при электрофорезе. Метод основан на том, что белки с различным электрическим зарядом перемещаются с разной скоростью.

Электрофорез белков плазмы был осуществлен впервые шведским ученым А. Тизелиусом (1930).

В плазме крови здорового человека при электрофорезе на бумаге можно обнаружить пять фракций: альбумины (50–70 %), альфа1 (?1-глобулины (3–6 %), альфа2 (?2) – глобулины (9-15 %), бета (?) – глобулины (8-18 %) и гамма (?) – глобулины (15–25 %).

При использовании других сред (агаровый гель, полиакриламидный гель) или иммуноэлектрофореза можно получить большее число фракций.

Альбумины составляют большую часть белков плазмы. Они хорошо удерживают воду, на их долю приходится до 80 % коллоидноосмотического давления крови.

Гипоальбуминемия – пониженное содержание альбуминов в плазме крови – возникает вследствие тех же причин, что и снижение общего количества белка (малое поступление с пищей, большие потери белка, нарушение его синтеза и повышение распада). Гипоальбуминемия вызывает снижение онкотического давления крови, что приводит к возникновению отеков.

Гидрофильность белков понижают разные отравляющие вещества, алкоголь.

Гиперальбуминемия наблюдается при обезвоживании организма.

Глобулины. Увеличение содержания альфа-глобулинов наблюдается при воспалительных процессах, стрессовых воздействиях на организм (травмы, ожоги, инфаркт миокарда и др.). Это белки так называемой острой фазы. Степень увеличения альфа-глобулинов отражает интенсивность процесса.

Преимущественное увеличение альфа2-глобулинов отмечается при острых гнойных заболеваниях, при вовлечении в патологический процесс соединительной ткани (ревматизм, системная красная волчанка и др.).

Повышение содержания альфа-глобулинов возможно также при некоторых хронических заболеваниях, злокачественных новообразованиях, особенно при их метастазировании.

Снижение альфа-глобулинов отмечается при угнетении их синтеза в печени, гипотиреозе, то есть пониженной функции щитовидной железы.

Бета-глобулины. В этой фракции присутствуют липопротеиды, и поэтому количество бета-глобулинов увеличивается при гиперлипопротеидемиях. Это наблюдается при атеросклерозе, диабете, гипотиреозе и нефротическом синдроме.

Уровень гамма-глобулинов повышен (гипергаммаглобулинемия) при усилении иммунных процессов. Это обусловлено повышенной продукцией иммуноглобулинов классов G, А, М, D, Е и наблюдается при острых и хронических вирусных, бактериальных, паразитарных инфекциях, заболеваниях соединительной ткани (коллагенозах), злокачественных заболеваниях крови, некоторых опухолях. Значительная гипергаммаглобулинемия характерна для хронических активных гепатитов, циррозов печени.

При некоторых заболеваниях (миеломная болезнь, заболевания крови, злокачественные новообразования) появляются особые патологические белки – парапротеины – иммуноглобулины, лишенные свойств антител. В этих случаях также наблюдается гипергаммаглобулинемия.

Уменьшение гамма-глобулинов отмечается при заболеваниях и состояниях, связанных с истощением и угнетением иммунной системы (хронические воспалительные процессы, аллергия, злокачественные заболевания в терминальной стадии, длительная терапия стероидными гормонами, СПИД).

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Белок плазмы крови: что это, функции

Белков человеческий организм вырабатывает очень много, они разнообразны по составу и выполняемой работе, однако белок плазмы крови играет важнейшую роль во множестве процессов, без которых жизнь человека станет невозможной.

Функции белков

Белки плазмы крови очень разнообразны. У человека насчитывается около ста типов белков. При ОАК (общий анализ крови) количество белка плазмы крови сигнализирует о том, как осуществляется в организме синтез аминокислот.

Обменные процессы, проходящие с помощью белков, указывают на то, насколько хорошо организм способен справиться с различными недугами: от проникновения инфекции до разрыва капилляров стенок сосудов.

В основном белки плазмы крови производятся в печени, но некоторые синтезируются в тканях костного мозга и лимфатических узлах.

Видео:

Функции белков плазмы крови огромны и зависят от спецификации того или иного вида белка. В основном их функции заключаются в поддержании нужного коллоидно-осмотического давления крови в сосудах, однако у белков есть и множество других задач.

Вот некоторые из них:

  • количество белков прямо пропорционально способности крови к сворачиванию;
  • белки обеспечивают кислотно-щелочное равновесие внутренней среды организма, являясь буферной кровяной системой;
  • плазменный белок альбумин и некоторые другие белки осуществляют транспорт к внутренним органам холестерина, билирубина и медикаментозных средств;
  • система комплемента и глобулины обеспечивают баланс гуморального иммунитета организма;
  • защищают от повреждения клетки крови и стенки сосудов;
  • деятельность белков по созданию нужного запаса аминокислот в русле крови обеспечивает организму нормальное функционирование в период недостатка питательных веществ;
  • отдельные виды белков способны расширять сосуды, снижая при этом артериальное давление, другие – наоборот, сужают сосуды в случае необходимости, и таким образом АД увеличивается.

Чтобы определить количество белков кровяной плазмы, делают биохимический анализ образца крови.

Отклонение от нормы количества белков того или иного вида, нарушения в их строении являются признаками различных недугов.

Норма белка

Однако ориентироваться при постановке диагноза только на белковый состав крови было бы неверно – ведь при всем своем многообразии белки кровяной плазмы составляют всего лишь около 7-8 % от числа всех белковых клеток организма.

Поэтому врачи оперируют совокупностью всех данных анализов и обследований пациента при диагностике и определении терапевтического курса лечения.

В зависимости от такого качества белковых молекул, как водо- растворимость или нерастворимость, белки могут называться простыми или сложными.

К простым белковым молекулам относится такой тип растворимого белка плазмы крови, как альбумин. Грубо говоря, все остальные белки относятся к сложным белковым структурам.

Как называется тот или иной нерастворимый белок плазмы крови, можно узнать, разделяя белки на фракции.

Это делается разными методами, но наиболее распространенным способом разделения по фракциям белков плазмы крови считается электрофорез.

Электрофорезный метод распределения белковых молекул по фракциям заключается в том, что разные белки под действием тока по-разному движутся на носителе.

В качестве последнего берут ацетатцеллюлозную пленку, на которую наносят сыворотку крови.

Пленку помещают на специальную рамку таким образом, чтобы ее края находились в емкостях с электролитом.

После пропускания электрического тока белки малого размера, обладающие наибольшим зарядом (альбумины), перемещаются быстрее остальных.

Глобулины, как наиболее крупные и электронейтральные молекулы, практически не двигаются по пленке.

Белковые фракции

Существуют способы, используя которые, можно выделить более 20 фракций белков, однако в обычных лабораторных условиях чаще всего используют электрофорезный метод фракционирования.

При помощи электрофореза выделяют пять белковых фракций:

  • альбумины;
  • α1— глобулины;
  • α2-глобулины;
  • β-глобулины;
  • γ-глобулины.

Альбуминов в плазме крови больше всего. Они производятся печенью в большом количестве.

Показатели белковых фракций

Срок жизни альбуминов очень мал – за сутки этих белковых молекул синтезируется и распадается порядка 11 — 15 г.

Именно их функцией является поддержка нужного давления в осмосе крови, поскольку альбумины – это растворимые белки, обладают наименьшей массой среди всех остальных белковых молекул.

Альбумины влияют на степень свертываемости крови, кислотно-щелочной баланс, осуществляют доставку длинноцепочечных кислот, билирубина, гормонов, лекарств к внутренним органам.

Альбумин нейтрализует ионы Ca₂+ и Mg₂+. Кроме всего этого, альбумины создают в плазме крови резервные запасы нужных аминокислот.

Глобулины фракции  αпроизводятся тканями костного мозга. Это нерастворимые белковые структуры с небольшой массой.

Тем не менее, α1— глобулины гидрофильны, что позволяет им осуществлять транспортировку жиров.

Такие α1— глобулины, как протромбин, участвуют в процессе свертываемости крови, оказывают угнетающее действие на некоторые ферменты.

В большинстве своем α2-глобулины синтезирует печень, однако примерно 25 % их производят ткани костного мозга.

Это биполимерные структуры, основной функцией которых является регуляторная деятельность.

Макроглобулин отвечает за острую фазу воспалительных явлений в организме, гаптоглобин в комплексе с гемоглобином предотвращает анемии, а при помощи церулоплазмина в тканях поддерживается баланс меди.

β-глобулины наполовину производятся в печени, наполовину – в костном мозге.

К ним относятся:

  • фибриноген, участвующий в образовании фибриновых нитей на месте порыва сосуда или капилляра;
  • липопротеиновые белковые структуры низкой плотности;
  • транскобаламин, ответственный за синтез витамина B₁₂;
  • трансферин, осуществляющий доставку железа к тканям;
  • белковые структуры, составляющие систему комплемента;
  • β-липопротеиды, переносящие фосфолипиды и холестерин.

Производство γ—глобулинов в основном происходит при помощи В-лимфоцитов, но 1/10 часть их синтезируется куперовскими парными клетками.

Видео:

В эту фракцию плазменных белков входят иммуноглобулины, которые защищают организм от проникновения чужеродных клеток путем выработки антител к ним.

Что такое диспротеинемия?

Нормальные концентрации белковых фракций в плазме крови у здорового человека представлены в таблице ниже.

ВеличинаПоказатель
общий белок56 — 86 г/л
альбумин30 — 49 г/л (55 — 75 %)
α1— глобулин1 — 3,5 г/л (3 — 5 %)
α2-глобулин6 — 11 г/л (10 — 15 %)
β-глобулин7 — 10 г/л (8 — 17 %)
γ-глобулин9 — 16 г/л (16 — 25 %)

Биохимические исследования белковых фракций при помощи электрофореза позволяют определить отклонения концентраций белковых структур от нормального состояния.

Такого рода патология называется диспротеинемией, которая бывает двух видов:

  • гиперпротеинемия;
  • гипопротеинемия.

Гиперпротеинемия, или увеличение количества белков в плазме крови, может иметь относительный или абсолютный характер.

Относительная гиперпротеинемия считается состоянием организма, которое при должной терапии причин патологии само придет в норму.

Бывает при травмах, порезах, ожогах, обезвоживании от рвоты. Абсолютная гиперпротеинемия возникает при увеличении в крови концентрации γ-глобулинов.

Ее часто называют γ—глобулинемией. Причиной такого состояния чаще всего бывают воспалительные процессы в хронической или острой фазе.

Видео:

Однако и значительная концентрация α1— глобулина тоже может иметь причины инфекционных поражений организма, полостных операций, травм, болезней печени.

Гипопротеинемия чаще всего возникает в случае недостатка в плазме крови альбуминов.

Такое состояние возникает при следующих патологиях:

  • из-за недостатка производства альбуминов печенью вследствие снижения функциональных способностей этого органа;
  • при значительной утилизации белков при обширных ожогах;
  • при злокачественных опухолях;
  • в результате тяжелого септического состояния;
  • при нефротическом синдроме;
  • вследствие длительного голодания;
  • при обильной кровопотере.

Однако чаще всего диспротеинемия сопровождается уменьшением количества белков одной фракции и увеличением другой.

Электрофорез позволяет отличить острую стадию воспалительных процессов от хронической.

При острой стадии концентрация альбуминов в плазме крови низкая, зато увеличивается число глобулинов α1—  и α2— фракций.

При хронической стадии воспалительного процесса в плазме крови возрастает концентрация -глобулинов.

Заболевания печени характеризуются снижением альбуминов и увеличением количества β-глобулинов.

Тем не менее, существуют состояния организма человека, при которых диспротеинемия считается физиологическим явлением.

К примеру, у новорожденных детей количество белков всех фракций снижено, и только к двум-трем годам жизни постепенно показатели протеинограммы у них приходят в норму.

У беременных женщин при гестозе концентрация белков в плазме крови тоже может быть понижена.

Несмотря на то что биохимический анализ крови с определением концентраций белков по фракциям может предоставлять врачам много нужной и полезной информации, ориентироваться только на протеинограмму при постановке диагноза никто не будет, потому что некоторые болезни могут давать одни и те же варианты изменения концентрации белков в плазме крови.

Видео:

К примеру, при нефротическом синдроме происходит уменьшение концентрации альбуминов, α1— и γ-глобулинов и увеличивается число α2— и β-глобулинов.

Диспротеинемия такого же рода может отмечаться и при других недугах, сопровождающихся изменением количества белков разных фракций.

Вы здесь:

Белки плазмы крови

В плазме крови открыто более 200 видов белков, которые составляют 7% объема плазмы. Белки плазмы крови синтезируются в основном в печени и макрофагах, а также в эндотелии сосудов, в кишечнике, лимфоцитах, почках, эндокринных железах. Разрушаются белки плазмы крови печенью, почками, мышцами и др. органами. Т½ белков плазмы крови составляет от нескольких часов до несколько недель.

В плазме крови белки выполняют следующие функции:

  1. Создают онкотическое давление. Оно необходимо для удержания воды в кровяном русле.

  2. Участвуют в свертывании крови.

  3. Образуют буферную систему (белковый буфер).

  4. Транспортируют в крови плохорастворимые в воде вещества (липиды, металлы 2 и более валентности).

  5. Участвуют в иммунных процессах.

  6. Образуют резерв аминокислот, который используется, например, при белковом голодании.

  7. катализируют некоторые реакции (белки-ферменты).

  8. Определяют вязкость крови, влияют на гемодинамику.

  9. Участвуют в реакциях воспаления.

Строение белков плазмы крови

По строению белки плазмы крови являются глобулярными, по составу они делятся на простые (альбумины) и сложные.

Среди сложных, можно выделить липопротеины (ЛПОНП, ЛППП, ЛПНП, ЛПВП, ХМ), гликопротеины (почти все белки плазмы) и металлопротеины (трансферин, церрулоплазмин).

Общее количество белкав плазме крови в норме составляет 70-90 (60-80) г/л, его определяют с помощью биуретовой реакции. Количество общего белка в крови имеет диагностическое значение.

Повышение общего количества белка в плазме крови называется гиперпротеинемия, снижение –гипопротеинемия. Гиперпротеинемия возникает при дегидратации (относительная), травмах, ожогах, миеломной болезни (абсолютная). Гипопротеинемия наступает при спаде отеков (относительная), голодании, патологии печени, почек, кровопотере (абсолютная).

Кроме общего содержания белков в плазме крови также определяют содержание отдельных групп белков или даже индивидуальных белков. Для этого их разделяют с помощью электроэлектрофореза.

Электрофорез– это метод, при котором вещества с различным зарядом и массой, разделяются в постоянном электрическом поле. Электрофорез проводят на различных носителях, при этом получают разное количество фракций. При электрофорезе на бумаге белки плазмы крови дают 5 фракций: альбумины, α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины. При электрофорезе на агаровом геле получается 7-8 фракций, на крахмальном геле – 16-17 фракций. Больше всего фракций – более 30, дает иммуноэлектрофорез.

Белки плазмы можно также разделить с помощью высаливания нейтральными солями щелочных и щелочноземельных металлов (3 фракции: альбумины, глобулины и фибриноген) или осаждения в спиртовом растворе.

Денситограмма белков

сыворотки крови

Электрофореграмма белков

сыворотки крови (10 пациентов)

Целесообразность разделения белков на фракции связана с тем, что белковые фракции плазмы крови отличаются между собой преобладанием в них белков, с определенными функциями, местом синтеза или разрушения.

Нарушение соотношения белковых фракций плазмы крови называется диспротеинемия. Выявление диспротеинемии имеет диагностическое значение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *