Кетоновые тела это: 🥑 Что такое кетоны? Все что нужно о них знать. – Кетоны в крови. Как распознать, причина появления

Содержание

🥑 Что такое кетоны? Все что нужно о них знать.

Один чудесный источник энергии привлек внимание многих экспертов по питанию и исследователей за последнее десятилетие. Нет, это не углеводы, жиры или даже не белок. Мы называем их кетонами или кетоновыми телами (подробнее о различии между ними позже). Однако для вашего тела кетоны не являются чем-то новым.

На самом деле, ваше сердце и почечная кора (часть почек, где происходит ультрафильтрация), используют кетоны в качестве топлива прямо сейчас. Эти клетки предпочитают использовать кетоны вместо сахара.

После нескольких дней голодания или кетогенной диеты производство кетонов увеличивается, и другие клетки, такие как ваши мышцы и клетки мозга, начинают использовать их также для получения энергии. В этом состоит основная цель кетогенной диеты, но почему это важно? Кетоны – это ведь еще один источник топлива, так?

Преимущество использования кетонов в качестве источника энергии вместо сахара.

Глюкоза является основным источником энергии почти для каждой клетки тела. Это связано с тем, что он может быть преобразована в энергию гораздо быстрее, чем любой другой источник топлива, и делает это без помощи митохондрий (основного энергопроизводящего компонента клетки). Однако использование глюкозы в качестве топлива приводит к некоторым негативным последствиям.

То, что получено быстро, теряет в эффективности. Во время процесса сжигания сахара выделяются свободные радикалы и реактивные виды кислорода (вредные соединения, которые могут вызвать повреждение клеток), и создается меньше энергии, чем при использовании кетонов из жира в качестве топлива.

Кетоны являются более эффективным источником топлива, который ингибирует образование свободных радикалов и активных форм кислорода. Это приводит ко множеству преимуществ, особенно для клеток мозга, которые используют кетоны вместо сахара для топлива. Например, исследования, проведенные с людьми с различными типами когнитивных проблем от болезни Паркинсона до эпилепсии, подтверждают, что использование кетонов в качестве топлива может значительно улучшить работу мозга.

Однако преимущества сжигания кетонов для получения энергии не останавливаются только на мозге. Многие другие клетки, такие как мышечные клетки, также получают выгоду от использования кетонов (подробнее об этом позже), но вы не можете воспользоваться этими преимуществами до тех пор, пока не израсходуете запасы сахара в организме.

На пути к кетозу.

Использование кетонов в качестве доминирующего источника топлива — процесс, известный как кетоз, — возникает, когда организм не обладает глюкозой в достаточном количестве. Это происходит, когда организм использует весь свой гликоген (сахара), и он не получает достаточного количества углеводов из поступающей пищи.

Однако, прежде чем мы начнем сжигать больше кетонов, организм полагается на глюконеогенез — процесс превращения несахарных соединений, таких как аминокислоты, в сахар. Это процесс самосохранения, но он также очень неэффективен и вызывает потерю мышц.

К счастью, аминокислоты используются в качестве доминирующего источника топлива только в течение первых двух-трех дней углеводного ограничения, потому что ваше тело хочет сохранить энергию и мышечную массу (точно так же, как вы). Чтобы заменить белок, далее организм использует более эффективный источник топлива, который сохраняет мышечную массу — кетоны.

Что же такое кетоны?

Поиск google по запросу «кетоны» даст несколько результатов, которые относятся к кетоновым телам. Во многих случаях кетоны и кетоновые тела используются взаимозаменяемо, но они не совсем одно и то же.

Технически, кетоны представляют собой органические соединения, которые содержат карбонильную группу (атом углерода, двойную связанную с атомом кислорода), которая является односвязной с двумя углеводородными группами, полученными окислением вторичных спиртов. Органическая химия – я уверен, что вы все поняли)

Давайте посмотрим на примеры кетонов, которые помогут нам составить более четкое представление:

Ацетон — самый простой кетон. В течение первых 2х недель на кетогенной диете организм может производить некоторые из них и высвобождать их с дыханием. Вот почему у вас может быть неприятный запах изо рта во время первой пары недель на кетогенной диете.

Если вы посмотрите на картину ацетона, вы увидите карбонильную группу, связанную с двумя углеводородными группами. <img src=»/storage/original/images/posts/1/dWqX4yL1.png» alt=»Молекула ацетона»> Карбонильная группа представляет собой большой «С» или атом углерода, который имеет двойную связь (обозначенную двойными прямыми линиями) до большого «О» или кислорода. Этот атом углерода также является одиночным соединением (обозначенным одиночными линиями) двум углеводородным группам.

Углеводородная группа представляет собой любое соединение, состоящее полностью из водорода и углерода. В нашей молекуле ацетона вы найдете две углеводородные группы, каждая из которых называется метильной группой. Каждая метильная группа содержит один атом углерода, один связанный с тремя молекулами водорода.

Органическая химия все еще кажется слишком сложной? Ну, хорошая новость в том, что это не совсем необходимо понимать. Все, что вам действительно нужно знать, это то, что ацетон одновременно является кетоном и кетоновым телом, а диацетил — другой природный кетон, который был популярным искусственным ароматическим маслом для попкорна — это всего лишь кетон. Вы также можете захотеть узнать, почему это так.

Что такое настоящие кетоновые тела?

Все кетоновые тела — кетоны, но не все кетоны — кетоновые тела. Невероятно, но это правда.

Существуют миллионы потенциальных соединений кетонов, которые могут быть образованы с различными комбинациями различных углеводородных групп, но не все из них считаются кетоновыми телами. Когда исследования и статьи говорят о кетоновых телах, они относятся к трем кетонам, которые организм образует естественным образом. Другие кетоны, такие как диацетил (кетон, который мы упоминали ранее), не вырабатываются организмом, поэтому они не подпадают под категорию «кетоновых тел».

Вот кетоны, которые также являются кетоновыми телами:

  • Ацетоуксусной кислоты
  • Бета-гидроксибутират (BHB)
  • Ацетон

Эти три вида являются единственными кетонами, которые производятся организмом. Все они продуцируются печенью и используются в качестве источника энергии, когда глюкоза недоступна, но все они производятся в разное время несколько разными способами.

Как образуются кетоновые тела?

Когда глюкоза недоступна, жир разрушается печенью в молекулы глицерина и жирной кислоты. Затем жирную кислота разрушается в процессе, называемом кетогенезом. Во время этого процесса появляется первое производимое кетоновое тело – ацетоацетат.

Затем ацетоацетат превращают в BHB или ацетон. Ацетон является мало вырабатываемым кетоновым телом, но он может вырабатываться в больших количествах, когда вы впервые начинаете кетогенную диету.

По мере привыкания ваших клеток к ограничению углеводов, BHB становится наиболее распространенным кетоновым телом, и ваши мозговые и мышечные клетки начинают использовать его в качестве основного топлива. Фактически, когда вы кето-адаптированы, кетоны могут обеспечить до 50% ваших базовых энергетических потребностей и 70% потребностей в энергии вашего мозга.

Но это всего лишь метаболический побочный продукт жира, о котором мы говорим. Как это может стать источником первичного топлива вашего мозга?

Ацетил-СоА и Цикл лимонной кислоты.

Ацетоацетат и BHB не были бы источниками топлива, если бы не было цикла лимонной кислоты, проходящего в митохондриях аэробных клеток. Этот цикл представляет собой метаболический процесс, который используют большинство клеток в организме для использования высокоэнергетических электронов из углеродного соединения, называемого ацетил-СоА.

Ацетил-КоА? Откуда это вообще? Из углеводов, белков, жиров и кетонов.

На самом деле, основной причиной, по которой печень образует ацетоацетат и BHB, является то, что его можно разделить на две молекулы ацетил-CoA в клетке, которые нуждаются в энергии. Как только они попадают внутрь клетки, две молекулы ацетил-СоА входят в цикл лимонной кислоты, их электроны с высокой энергией переносятся в молекулы NAD и FAD, и они превращаются в углекислый газ.

Затем молекулы NAD и FAD соединяются с электронами с образованием NADH и FADh3. Другими словами, эти молекулы NADH и FADh3 действуют как временная молекула хранения электронов высокой энергии, которые мы получили от разрушения молекул ацетил-CoA.

И в чем цель этого процесса? В создании ATP (наиболее распространенное соединение, которое организм использует для хранения и выделения энергии). (Если хочется узнать подробнее, то почитать можно здесь.

Однако для создания АТФ электроны, взятые из ацетил-СоА в течение цикла лимонной кислоты, должны проходить через другой процесс, называемый окислительным фосфорилированием. Во время окислительного фосфорилирования электроны из NADH и FADh3 переносятся в молекулу кислорода, так что АТФ может быть окончательно сформирован. Это является одним из процессов, которые проходит наше тело, для производства энергии.

Важно иметь в виду, что количество энергии, образовавшейся в течение этих двух процессов (цикл лимонной кислоты и окислительное фосфорилирование), зависит от используемого источника энергии. Например, BHB генерирует на 3 молекулы АТФ больше, чем ацетоацетат, потому что он подвергается уникальной реакции, которая обеспечивает клетку дополнительной молекулой NADH.

В общем, цикл лимонной кислоты в сочетании с окислительным фосфорилированием обеспечивает более 95% энергии, используемой аэробными клетками, такими как сердце, мышцы, мозг и клетки почек. Однако, к ним не относятся эритроциты и клетки печени, которые не могут сжигать кетоны для получения топлива.

Тело не может выжить только на кетонах.

Для того, чтобы клетка использовала цикл лимонной кислоты и окислительное фосфорилирование для производства энергии, она должна иметь митохондрии и различные специфические ферменты. Однако у каждой клетки тела нет и того, и другого.

Например, красные кровяные клетки не имеют митохондрий, а в клетках печени отсутствует фермент, называемый CoA-трансфераза. Поэтому, эти клетки нуждаются в глюкозе для их энергоснабжения. Однако это не означает, что мы должны есть углеводы для нашей печени и эритроцитов, чтобы выжить. У печени есть другой способ приготовления сахара.

Кетогенез и глюконеогенез работают сообща.

Помните глицерин, который мы упоминали ранее, который был создан при разбивке жира? Он не пропал.

В то время как жирная кислота из жира превращается в кетоны, глицерин превращается в глюкозу во время глюконеогенеза. Это нормальный метаболический процесс, который создает глюкозу из аминокислот в белке, лактат из мышц и глицерин из жирных кислот.

Во время голодания или ограничения углеводов глюконеогенез поддерживает уровень сахара в крови на здоровом уровне и обеспечивает энергию для печени и эритроцитов, тогда как кетогенез (сжигание кетонов для топлива) используется для обеспечения энергией мозга, сердца, почек, мышц, и других аэробны клеток.

Связь между кетогенезом и глюконеогенезом необходима для понимания кетогенных диет, но почему?

Потому что, если вы едите недостаточно белка, ваши мышечные ткани будут гореть, чтобы сделать глюкозу необходимую для вашего организма. С другой стороны, если вы едите слишком много белка, ваше тело никогда не попадет в глубокий кетоз.

Однако, даже если вы получите всю свою норму макроэлементов, ваше тело не будет сразу же увеличивать производство кетонов. На самом деле для вашего тела требуется до трех дней, чтобы попасть в кетоз (без помощи экзогенных кетонов).

Экзогенные кетоны — что это такое? Стоят ли они того?

Всю статью мы говорим об эндогенных кетонах или кетонах, которые сделаны организмом. Тем не менее, также можно употребить экзогенные кетоны, чтобы отправить ваше тело в кетоз, не дожидаясь, пока ваша печень сама будет производить кетоны.

Единственными настоящими экзогенными кетонами на рынке на сегодняшний день являются природные кетоновые соли, которые объединяют ацетоацетат или BHB с натрием, калием и / или кальцием. KetoForce, KetoCaNa и Keto OS являются наиболее популярными кетонами на рынке, но работают ли они?

Исследования кетоновых солей редко встречаются, но они, по всей видимости действительно повышают уровень кетона. В исследованиях, проведенных при голодании, кетоновую соль ацетоацетата натрия вводили через капельницу. Это привело к увеличению общего уровня кетонов на 47% -92%. Тем не менее, эндогенное производство кетонов снизилось до 67% -90% от нормального уровня голодания.

Что это значит для вас?

Употребление кетоновых солей, вероятно, увеличит уровень кетонов, но это может быть не очень полезно при долгосрочных кетогенных диетах. Это связано с тем, что поглощение кетонов приводит к повышению уровня кетонов, что в свою очередь приводит к тому, что печень прекращает производство кетонов. Другими словами, прием кетоновых добавок будет сдерживать собственное производство кетонов вашим организмом.

Если ваша цель – нахождение в долгосрочном кетозе, то экзогенные кетоны — не лучший выбор. Однако есть еще одно дополнение, которое может помочь увеличить производство эндогенных кетонов — МСТ. С помощью этого дополнения ваша печень, естественно, начнет жечь больше кетонов для производства топлива сразу (и намного дешевле экзогенных кетонов).

Как увеличить выработку кетонов без негативных последствий?

Хотя они и не являются кетонами, триглицериды средней цепи (MCT) могут быть разбиты на кетоновые тела в печени, не важно – в кетозе вы или нет.

MCT — это насыщенный жир, который отличается от любого другого насыщенного жира. Большинство насыщенных жиров, которые мы потребляем, проходят через лимфу в сердце и мышцы, оставляя в вашей печени остатки, которые могут быть превращены в кетоны.

Эти жиры, повышающие кетоны, встречаются в кокосовом орехе, кокосовом молоке и кокосовом масле, но наиболее эффективным способом потребления МСТ является использование добавки MCT в виде масла.

Как выбрать MCT масло? Лучшее MCT масло, которое стоит выбрать — это то, которое содержит исключительно триглицерид средней цепи, который называется каприловой кислотой (триглицерид средней цепи C-8). Известно, что каприловая кислота перерабатывается в кетоны быстрее и легче, чем другие типы триглицеридов со средней длиной цепи.

Однако, если вы не можете позволить себе более дорогую каприловую кислоту, любое другое MCT масло подойдет.

Необходима правильная дозировка масла MCT. Если вы выпьете слишком много и слишком быстро, то, вероятно, испытаете проблемы с пищеварением. Вот почему важно подобрать дозировку, которая увеличивает ваш энергетический уровень без каких-либо побочных эффектов. Далее вы можете либо придерживаться этой дозы, либо медленно ее увеличивать.

Важным предостережением является то, что пищевые добавки MCT не могут помочь диабетикам. Исследования на крысах показали, что добавка масла MCT может нанести ущерб здоровью крыс, которые имеют проблемы с регуляцией уровня сахара в крови. Эти данные могут указывать на то, что добавка масла MCT может повысить вероятность кетоацидоза у людей с диабетом.

Кетоацидоз — плохая сторона кетоза.

Повышение кетонов в крови не является хорошим признаком для всех. Когда инсулин не вырабатывается или не работает правильно, уровень кетонов может резко возрасти и продолжать расти до нездорового уровня. Это обычно называют диабетическим кетоацидозом. «Диабетическим», потому что это происходит у людей с диабетом Первого и Второго типа и «кетоацидозом», потому что чрезмерное количество кетонов заставляет кровь становиться очень кислой.

Этот сдвиг в кислотности крови может быть фатальным, но его можно легко смягчить. Наиболее распространенными симптомами являются жажда, частое мочеиспускание, тошнота, боль в животе, слабость, ароматическое дыхание и путаница. Если у вас есть эти симптомы, выпейте много воды, и они могут отступить. Проконсультируйтесь с вашим врачом, если симптомы не улучшатся.

Однако диабетический кетоацидоз можно предотвратить. Следуя кетогенной диете, диабетики 1 и 2 типа будут менее склонны к проблемам с уровнем сахара в крови и кетонов, и с большей вероятностью испытают преимущества кетоза (при условии, что они будут контролировать уровень инсулина).

Но как насчет людей, у которых нет диабета?

Для здоровых людей крайне маловероятно проявление кетоацидо. Здоровое тело создает много инсулина, и его клетки реагируют на этот инсулин соответствующим образом. Это позволяет печени производить кетоны в нужное время и прекращать их, когда слишком много кетоновых тел попадает в кровь.

Хорошая сторона кетонов – комплексные преимущества для здоровья.

Я уверен, что в ближайшее десятилетие стоит ожидать гораздо большего числа исследований кетонов, но вот краткий список преимуществ, которые уже подтверждены научно:

  1. Кетоны стимулируют производство митохондрий.

Новые митохондрии образуются в клетках после того, как они начинают сжигание исключительно кетонов для топлива. Обнаружено, что это происходит в клетках мозга людей, находящихся на кетогенной диете.

Почему это важно? Потому что большое количество митохондрий приводит к большему количеству энергии и более здоровым клеткам.

  1. Кетоз защищает и восстанавливает нервную систему

Многие проведенные исследования показали, что кетоны помогают сохранить функцию стареющих нервных клеток и помогают в регенерации поврежденной и неисправной нервной системы. Например, одно исследование показало, что кетоны помогли пациентам с острой мозговой травмой получить значительные улучшения.

  1. Кетоны действуют как антиоксиданты

Сжигание кетонов в качестве топлива уменьшает количество активных форм кислорода и образующихся свободных радикалов. Это помогает защитить организм от повреждений и болезней, которые могут вызвать реактивные виды кислорода и свободные радикалы.

  1. Кетоны сохраняют мышечную массу.

Когда вы теряете мышечную массу, вы теряете годы своей жизни. Это неприятный побочный эффект старения, однако кетогенная диета может стать защитным средством.

Многие исследования показали, что кетоны обладают эффектом сохранения мышц. Этот эффект был особенно заметен у людей, которые ограничивали калории, чтобы похудеть. Это делает кетогенную диету и кетоны не только отличным средством для потери жира, но и для долголетия.

  1. Помощь кетонов в предотвращении роста раковых клеток.

Исследования показывают, что кетоны могут помочь бороться с раком. Это связано с тем, что раковые клетки не могут использовать кетоны в качестве топлива. Без топлива раковые клетки не имеют энергии для роста, и иммунная система может помочь устранить их из организма.

  1. Кетоны могут улучшить качество жизни людей с аутизмом.

Исследования на мышах, которые проявили подобное поведение, как люди с аутизмом, дают нам многообещающие результаты. В этих исследованиях было обнаружено, что кетогенная диета может улучшать и даже отменять аутизм-подобное поведение у мышей.

Эти положительные результаты, вероятно, были вызваны двумя факторами. Первый фактор заключается в том, что клетки мозга функционируют более эффективно, когда они используют кетоны для топлива, а не сахар. Во-вторых, кетоны могут оказывать ингибирующее действие на нервные клетки. Что происходит, когда вы делаете гипер-возбудимую нервную систему более эффективной и менее активной? Меньше поведения, связанного с аутизмом.

Вот они — шесть преимуществ кетонов, которые подкреплены наукой. Однако, имейте ввиду, что мы все еще только начинаем понимать эффекты, которые кетоны оказывают на организм, поэтому этот список далек от завершения.

На последок.

Если вы поддерживаете здоровый уровень инсулина и питаетесь по кетогенной диете с правильным соотношением макроэлементов, вы попадаете в кетоз и испытываете множество преимуществ кетонов без каких-либо побочных эффектов.

Если вам нужно быстрое повышение уровня кетонов, попробуйте добавить MCT масло. Этот насыщенный жир облегчит вашему телу производство кетонов и адаптацию к кетогенной диете.

И не забывайте о глюконеогенезе. Без правильного потребления белка и жира ваше тело будет продолжать использовать глюконеогенез в качестве топлива вместо того, чтобы переходить в кетоз.

Источники:

Кетоновые тела — Википедия. Что такое Кетоновые тела

Кето́новые тела́ (синоним: ацето́новые тела, ацето́н [распространённый медицинский жаргонизм]) — группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА[2]:

Историческая справка

Прежние представления о том, что кетоновые тела являются промежуточными продуктами бета-окисления жирных кислот, оказались ошибочными[2]:

  • Во-первых, в обычных условиях промежуточными продуктами бета-окисления жирных кислот являются КоА-эфиры этих кислот: β-оксибутирил-КоА или ацетоацетил-КоА.
  • Во-вторых, β-оксибутирил-КоА, образующийся в печени при бета-окислении жирных кислот, имеет L-конфигурацию, в то время как β-оксибутират, обнаруживаемый в крови, представляет собой D-изомер. Именно β-оксибутират D-конфигурации образуется в ходе метаболического пути синтеза β-окси-β-метилглутарил-КоА.

Метаболизм кетоновых тел

Ацетон в плазме крови в норме присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоуксусной кислоты и не имеет определённого физиологического значения[2]

Нормальное содержание кетоновых тел в плазме крови человека и большинства млекопитающих (за исключением жвачных) составляет 1…2 мг% (по ацетону). При увеличении их концентрации свыше 10…15 мг% они преодолевают почечный порог и определяются в моче. Наличие кетоновых тел в моче всегда указывает на развитие патологического состояния.

Кетоновые тела синтезируются в печени из ацетил-КоА:[2]

На первом этапе из двух молекул ацетил-КоА синтезируется ацетоацетил-КоА. Данная реакция катализируется ферментом ацетоацетил-КоА-тиолазой:
Ac−КоА + Ac−КоА → .
Затем под влиянием фермента гидроксиметилглутарил-КоА-синтазы присоединяется ещё одна молекула ацетил-КоА:
H3C−CO−CH2−CO−S−КоА + Ac−КоА → .
Образовавшийся β-гидрокси-β-метилглутарил-КоА (HMG-KoA) способен под действием фермента гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоуксусную кислоту (ацетоацетат) и ацетил-КоА:
HOOC−CH2−COH(CH3)−CH2−CO−S−КоА → + Ac—КоА.
Ацетоуксусная кислота способна восстанавливаться при участии НАД-зависимой D-β-оксибутиратдегидрогеназы; при этом образуется D-β-оксимасляная кислота (D-β-оксибутират). Фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры.[2]
H3C−CO−CH2−COOH + NADH → .
Ацетоуксусная кислота в процессе метаболизма способна окисляться до ацетона с выделением молекулы углекислого газа:[1]
H3C−CO−CH2−COOHCO2 + .

Альтернативный путь

Существует второй путь синтеза кетоновых тел:

Образовавшийся путём конденсации двух молекул ацетил-КоА ацетоацетил-КоА способен отщеплять кофермент A с образованием свободной ацетоуксусной кислоты[3]. Процесс катализирует фермент ацетоацетил-КоА-гидролаза (деацилаза), однако данный путь не имеет существенного значения в синтезе ацетоуксусной кислоты, так как активность деацилазы в печени низкая.[2]
+ H2O → + КоА-SH.

Биологическая роль кетоновых тел

В плазме крови здорового человека кетоновые тела содержатся в весьма незначительных концентрациях. Однако при патологических состояниях (длительное голодание, тяжёлая физическая нагрузка, тяжёлая форма сахарного диабета) концентрация кетоновых тел может значительно повышаться и достигать 20 ммоль/л (кетонемия). Кетонемия, ацетонемия (повышение концентрации кетоновых тел в крови) возникает при нарушении равновесия — скорость синтеза кетоновых тел превышает скорость их утилизации периферическими тканями организма.[2]

За последние десятилетия накопились сведения, указывающие на важное значение кетоновых тел в поддержании энергетического баланса. Кетоновые тела — топливо для мышечной ткани, почек и действуют, вероятно, как часть регуляторного механизма с обратной связью, предотвращая излишнюю мобилизацию жирных кислот из жировых депо.[2] Во время голодания кетоновые тела являются одним из основных источников энергии для мозга.[4][5]Печень, синтезируя кетоновые тела, не способна использовать их в качестве энергетического материала (не располагает соответствующими ферментами).

В периферических тканях β-оксимасляная кислота окисляется до ацетоуксусной кислоты, которая активируется с образованием соответствующего КоА-эфира (ацетоацетил-КоА). Существует два ферментативных механизма активации:[2]

  • первый путь — с использованием АТФ и HS-КоА, аналогичный пути активации жирных кислот:

H3C—CO—CH2—COOH (Ацетоуксусная кислота)

|

+ АТФ + HS-КоА Ацил-КоА-синтетаза  АМФ + ФФн

H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

  • второй путь — перенос Коэнзима А от сукцинил-КоА на ацетоуксусную кислоту:

HOOC—CH2—CH2—CO—S-КоА (Сукцинил-КоА+ H3C—CO—CH2—COOH (Ацетоуксусная кислота)

↓↑

HOOC—CH2—CH2—COOH (Сукцинат+ H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

Образовавшийся в ходе этих реакций ацетоацетил-КоА в дальнейшем подвергается тиолитическому расщеплению в митохондриях с образованием двух молекул ацетил-КоА, которые, в свою очередь, являются сырьём для цикла Кребса (цикл трикарбоновых кислот), где окисляются до CO2 и H2O.

H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

|

+ HS-КоА  H3C—CO—S-КоА

H3C—CO—S-КоА ( Ацетил-КоА)

Повышение содержания кетоновых тел в организме может быть связано с дефицитом углеводов в обеспечении организма энергией, а также происходит, когда скорость синтеза кетоновых тел превышает скорость их утилизации.

Лабораторная диагностика

Для качественного определения содержания кетоновых тел в моче в лабораторных условиях используются цветные пробы Ланге, Легаля, Лестраде и Герхарда.

Примечания

См. также

Кетоновые тела: повышенные кетоновые тела в моче и в крови

Кетоновые тела – это вещества, которые образуются в результате мобилизации жира при негативном энергетическом балансе. Эти вещества особенно опасны за счет высокого окислительного потенциала и связаны с индукцией окислительного повреждения (12).

К ним относятся:

  • Ацетон;
  • Ацетоацетат.

Уровень ацетона и ацетоацетата в крови невозможно измерить из-за интенсивного молекулярного распада во время хранения и анализа образцов.

β-гидроксибутират (БГБ) образуется из ацетоацетата при достаточном количестве НАДH + H+.

β-гидроксибутират основной маркер в современных тестах на кетоз (15).

Синтез кетоновых тел

Потребность в быстроусвояемой энергии после отела критически возрастает, и организм коровы начинает изымать энергию из всех доступных источников. Образование (синтез) кетоновых тел происходит следующим образом: при β-расщеплении жирных кислот в процессе жирового обмена образуется ацетил-КоА, молекулы которого конденсируются в кетоновые тела. В здоровом организме они участвуют в обмене веществ и нейтрализуются, используясь в построении аминокислот, холестерина и т.д. В случае же недостатка глюкозы в крови использование кетоновых тел в обменных процессах снижается до минимума, вследствие чего идет их накопление в крови – кетонемия, что, в свою очередь, приводит к кетонурии и обнаружению кетоновых тел в молоке, крови и моче.

Кетоновые тела в крови: норма и патология

В первую очередь необходимо упомянуть о том, что означает уровень и следы кетоновых тел в крови, моче и молоке. Содержание ацетона, ацетоуксусной кислоты и β-гидроксибутирата является нормальным до определенного предела. При накоплении данные вещества вызывают окислительное повреждение клеток, что ведет к интоксикации организма.

Кетоновые тела в норме содержатся в крови взрослого животного в количестве до 0,6 ммоль на литр. Этот параметр не является универсальным: в расчет принимается и индивидуальное физиологическое состояние, продуктивность, период жизненного цикла. Данная цифра приемлема для высокоудойных коров с годовым надоем более 4000 литров, в период после отела. Некоторые исследования настаивают на диагностировании субклинического кетоза уже после показаний 0,3 ммоль на литр.

Однозначно можно говорить о субклиническом течении кетоза при результатах анализа крови, где уровень кетоновых тел колеблется от 0,6 до 1 ммоль на литр. Превышение является незначительным и часто не требует лечения, но сигнализирует о необходимости корректировки рациона и режима содержания сухостойных коров и первотелок.

Значения выше 1,5 ммоль на литр свидетельствуют о тяжелых нарушениях белкового, углеводного и липидного обмена. Клинические симптомы могут отсутствовать, но и субклиническое течение увеличивает риск развития эндометритов, маститов, заболеваний копыт за счет ослабления резистентности организма вследствие постоянной интоксикации.

Определение количества кетоновых тел

Способов определения кетоза много. Диагноз можно установить, исследовав кровь, мочу или молоко. Самым надежным показателем является исследование крови: у высокоудойных коров, например, количество кетоновых тел (ацетон, ацетоуксусная и β-оксимасляная кислота (β-гидроксибутират)) в моче может в разы превышать норму, при сравнительно низких показателях в крови. Лучше исследовать кровь у определенного процента отелившихся коров (5-30%), для получения полной картины.

Содержание ацетона и его производных можно определить:

  1. В лабораторных условиях, обратившись в соответствующую организацию. При соблюдении правил транспортировки биологического материала получают точный результат.
  2. Метод с реактивом Лестарде. Легко проводится в условиях фермы, подходит для определения содержания β-оксимасляной, ацетоуксусной кислот и ацетона в молоке и в моче. Для анализа требуется собственно реактив и 10 мл молока (после частичного сдаивания). Как проводится: в стерильную пробирку вносится реактив и медленно наливается молоко. При положительной реакции получаем насыщенных фиолетовый цвет. Анализ мочи на кетоновые тела проходит таким же образом. Тест не самый надежный, но позволяет получить приблизительные результаты.
  3. Использование специальных медицинских аппаратов с тест-полосками, реагирующими на β-оксимасляную кислоту. Эти приборы давно вошли в повсеместное пользование как для людей, больных диабетом, так и для коров. Для анализа требуется только капля венозной крови. Кровь берут из-под хвоста. Тщательно дезинфицируется место укола, вводится тестовая игла, происходит автоматический забор крови и практически сразу же получаем точные значения количества кетоновых тел в ммоль/литр на экране прибора. Используемые на фермах аппараты — FreeStyle Precision или Precision Xceed. Кетоз – это постоянная интоксикация организма, поэтому контроль субклинического кетоза позволит грамотно организовать кормление и дополнительно профилактировать заболевания акушерско-гинекологического и ортопедического характера, повысить резистентность к заболеваниям вирусного и бактериального происхождения.

* смотрите также страницу ссылок

КЕТОНОВЫЕ ТЕЛА — это… Что такое КЕТОНОВЫЕ ТЕЛА?


КЕТОНОВЫЕ ТЕЛА

КЕТОНОВЫЕ ТЕЛА (ацетоновые тела), три химических соединения: ацетоуксусная кислота, оксимасляная кислота и пропанон (ацетон). Если в крови содержится большое количество кетонов, они повышают ее кислотность. Это явление называется кетоз, случается после голодания и при ДИАБЕТЕ. Кетоновые тельца появляются вследствие слабого углеводного обмена веществ (МЕТАБОЛИЗМА), накапливаются в тканях и жидкостях, особенно в моче.

Научно-технический энциклопедический словарь.

  • КЕССОН
  • КЕТОНЫ

Смотреть что такое «КЕТОНОВЫЕ ТЕЛА» в других словарях:

  • кетоновые тела — – промежуточные продукты распада высших жирных кислот, образующихся в печени из ацетил КоА (ацетоацетат, ацетон, β гидроксибутират) …   Краткий словарь биохимических терминов

  • Кетоновые тела — Химическая структура трёх кетоновых тел: ацетон, ацетоуксусная, и бета оксимаслянная кислоты.[1] Кетоновые тела (синоним …   Википедия

  • Кетоновые тела — I Кетоновые тела (синоним ацетоновые тела) группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное… …   Медицинская энциклопедия

  • КЕТОНОВЫЕ ТЕЛА — кетоновые тела, то же, что ацетоновые тела …   Ветеринарный энциклопедический словарь

  • кетоновые тела — (син. ацетоновые тела) группа органических соединений (бета оксимасляная кислота, ацетоуксусная кислота и ацетон), являющихся промежуточными продуктами обмена жиров, углеводов и белков; появление повышенного количества К. т. в крови и моче… …   Большой медицинский словарь

  • Кетоновые тела —         группа органических соединений (β оксимасляная кислота, ацетоуксусная кислота, ацетон), образующихся в печени, накапливающихся в крови (кетонемия) и выделяющихся с мочой (кетоурия) при неполном окислении жирных кислот в результате… …   Большая советская энциклопедия

  • Кетоновые тела — – группа органических соединений (β оксимасляная, ацетоуксусная кислоты и ацетон), нормальные метаболиты обмена веществ, используются в качестве источника энергии, особенно жвачными животными …   Словарь терминов по физиологии сельскохозяйственных животных

  • Ацетоновые тела —         кетоновые тела, группа органических соединений: Р оксимасляная кислота, ацетоуксусная кислота и ацетон, образующиеся в печени при неполном окислении жирных кислот. А. т. легко окисляются в скелетных мышцах и почках. Интенсивность… …   Большая советская энциклопедия

  • АЦЕТОНОВЫЕ ТЕЛА — кетоновые тела, группа промежуточных продуктов обмена веществ, включающая ацетон, ацетоуксусную и b окоимасляную к ты. Образуются при неполном окислении жирных к т и распаде кетогенных аминокислот. В организме А. т. окисляются до СО2 и Н2О;… …   Биологический энциклопедический словарь

  • АЦЕТОНОВЫЕ ТЕЛА — ацетоновые тела, кетоновые тела, группа продуктов обмена веществ, включающая β оксимасляную кислоту СН3СНОНСН3СООН, ацетоуксусную кислоту СН3СОСН3СООН и ацетон СН3СОСН3. Образуются главным образом в печени и в меньшей степени в почках в… …   Ветеринарный энциклопедический словарь

Кетоновые тела — Википедия (с комментариями)

Ты — не раб!
Закрытый образовательный курс для детей элиты: «Истинное обустройство мира».
http://noslave.org

Материал из Википедии — свободной энциклопедии

Кето́новые тела́ (синоним: ацето́новые тела, ацето́н [распространённый медицинский жаргонизм]) — группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА[2]:

Историческая справка

Прежние представления о том, что кетоновые тела являются промежуточными продуктами бета-окисления жирных кислот, оказались ошибочными[2]:

  • Во-первых, в обычных условиях промежуточными продуктами бета-окисления жирных кислот являются КоА-эфиры этих кислот: β-оксибутирил-КоА или ацетоацетил-КоА.
  • Во-вторых, β-оксибутирил-КоА, образующийся в печени при бета-окислении жирных кислот, имеет L-конфигурацию, в то время как β-оксибутират, обнаруживаемый в крови, представляет собой D-изомер. Именно β-оксибутират D-конфигурации образуется в ходе метаболического пути синтеза β-окси-β-метилглутарил-КоА.

Метаболизм кетоновых тел

Ацетон в плазме крови в норме присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоуксусной кислоты и не имеет определённого физиологического значения[2] (в сущности являясь токсическим веществом для головного мозга, циркулирует в мизерной концентрации).[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function «#property» was not found.)]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function «#property» was not found.)]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function «#property» was not found.)]]Ошибка Lua: callParserFunction: function «#property» was not found.Кетоновые телаОшибка Lua: callParserFunction: function «#property» was not found.Кетоновые телаОшибка Lua: callParserFunction: function «#property» was not found.Кетоновые тела[источник не указан 2611 дней]

Нормальное содержание кетоновых тел в плазме крови человека и большинства млекопитающих (за исключением жвачных) составляет 1…2 мг% (по ацетону). При увеличении их концентрации свыше 10…15 мг% они преодолевают почечный порог и определяются в моче. Наличие кетоновых тел в моче всегда указывает на развитие патологического состояния.

Кетоновые тела синтезируются в печени из ацетил-КоА:[2]

На первом этапе из двух молекул ацетил-КоА синтезируется ацетоацетил-КоА. Данная реакция катализируется ферментом ацетоацетил-КоА-тиолазой:
Ac−КоА + Ac−КоАH3C−CO−CH2−CO−S−КоА.
Затем под влиянием фермента гидроксиметилглутарил-КоА-синтазы присоединяется ещё одна молекула ацетил-КоА:
H3C−CO−CH2−CO−S−КоА + Ac−КоАHOOC−CH2−COH(CH3)−CH2−CO−S−КоА.
Образовавшийся β-гидрокси-β-метилглутарил-КоА (HMG-KoA) способен под действием фермента гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоуксусную кислоту (ацетоацетат) и ацетил-КоА:
HOOC−CH2−COH(CH3)−CH2−CO−S−КоАH3C−CO−CH2−COOH + Ac—КоА.
Ацетоуксусная кислота способна восстанавливаться при участии НАД-зависимой D-β-оксибутиратдегидрогеназы; при этом образуется D-β-оксимасляная кислота (D-β-оксибутират). Фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры.[2]
H3C−CO−CH2−COOH + NADHH3C−CHOH−CH2−COOH.
Ацетоуксусная кислота в процессе метаболизма способна окисляться до ацетона с выделением молекулы углекислого газа:[1]
H3C−CO−CH2−COOHCO2 + H3C−CO−CH3.

Альтернативный путь

Существует второй путь синтеза кетоновых тел:

Образовавшийся путём конденсации двух молекул ацетил-КоА ацетоацетил-КоА способен отщеплять кофермент A с образованием свободной ацетоуксусной кислоты[3]. Процесс катализирует фермент ацетоацетил-КоА-гидролаза (деацилаза), однако данный путь не имеет существенного значения в синтезе ацетоуксусной кислоты, так как активность деацилазы в печени низкая.[2]
H3C−CO−CH2−CO−S−КоА + H2OH3C−CO−CH2−COOH + КоА-SH.

Биологическая роль кетоновых тел

В плазме крови здорового человека кетоновые тела содержатся в весьма незначительных концентрациях. Однако при патологических состояниях (длительное голодание, тяжёлая физическая нагрузка, тяжёлая форма сахарного диабета) концентрация кетоновых тел может значительно повышаться и достигать 20 ммоль/л (кетонемия). Кетонемия, ацетонемия (повышение концентрации кетоновых тел в крови) возникает при нарушении равновесия — скорость синтеза кетоновых тел превышает скорость их утилизации периферическими тканями организма.[2]

За последние десятилетия накопились сведения, указывающие на важное значение кетоновых тел в поддержании энергетического баланса. Кетоновые тела — топливо для мышечной ткани, почек и действуют, вероятно, как часть регуляторного механизма с обратной связью, предотвращая излишнюю мобилизацию жирных кислот из жировых депо.[2] Во время голодания кетоновые тела являются одним из основных источников энергии для мозга.[4][5]Печень, синтезируя кетоновые тела, не способна использовать их в качестве энергетического материала (не располагает соответствующими ферментами).

В периферических тканях β-оксимасляная кислота окисляется до ацетоуксусной кислоты, которая активируется с образованием соответствующего КоА-эфира (ацетоацетил-КоА). Существует два ферментативных механизма активации:[2]

  • первый путь — с использованием АТФ и HS-КоА, аналогичный пути активации жирных кислот:

H3C—CO—CH2—COOH (Ацетоуксусная кислота)

|

+ АТФ + HS-КоА Ацил-КоА-синтетаза  АМФ + ФФн

H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)</span>

  • второй путь — перенос Коэнзима А от сукцинил-КоА на ацетоуксусную кислоту:

HOOC—CH2—CH2—CO—S-КоА (Сукцинил-КоА+ H3C—CO—CH2—COOH (Ацетоуксусная кислота)

↓↑

HOOC—CH2—CH2—COOH (Сукцинат+ H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

Образовавшийся в ходе этих реакций ацетоацетил-КоА в дальнейшем подвергается тиолитическому расщеплению в митохондриях с образованием двух молекул ацетил-КоА, которые, в свою очередь, являются сырьём для цикла Кребса (цикл трикарбоновых кислот), где окисляются до CO2 и H2O.

H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)</span>

|

+ HS-КоА  H3C—CO—S-КоА

H3C—CO—S-КоА ( Ацетил-КоА)

Повышение содержания кетоновых тел в организме связано прежде всего с дефицитом углеводов в обеспечении организма энергией: перегрузка белками и жирами на фоне недостатка легкоперевариваемых углеводов в рационе, истощение, ожирение, нарушение эндокринной регуляции (сахарный диабет, тиреотоксикоз), отравления, травма черепа и т. д.

Лабораторная диагностика

Для качественного определения содержания кетоновых тел в моче в лабораторных условиях используются цветные пробы Ланге, Легаля, Лестраде и Герхарда.

Напишите отзыв о статье «Кетоновые тела»

Примечания

  1. 1 2 Тюкавкина Н. А., Бауков Ю. И. Биоорганическая химия.— М.: Медицина, 1985.— 480 с.
  2. 1 2 3 4 5 6 7 8 9 Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник / Под. ред. акад. АМН СССР С. С. Дебова.— 2-е изд., перераб. и доп.— М.: Медицина,— 1990.— 528 с. ISBN 5-225-01515-8.
  3. Ацетоуксусная кислота // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Mary K. Campbell, Shawn O. Farrell. Biochemistry. — 5th. — Cengage Learning, 2006. — P. 579. — ISBN 0534405215.
  5. (2006) «[http://www.med.upenn.edu/timm/documents/ReviewArticleTIMM2008-9Lazar-1.pdf Fuel Metabolism in Starvation]». Annual Review of Nutrition 26: 1. DOI:[//dx.doi.org/10.1146%2Fannurev.nutr.26.061505.111258 10.1146/annurev.nutr.26.061505.111258].

См. также

Отрывок, характеризующий Кетоновые тела

Мы легко скользнули внутрь и … как будто в зеркале, увидели вторую Стеллу!.. Да, да, именно Стеллу!.. Точно такую же, как та, которая, совершенно растерянная, стояла в тот момент рядом со мной…
– Но это же я?!.. – глядя на «другую себя» во все глаза, прошептала потрясённая малышка. – Ведь это правда я… Как же так?..
Я пока что никак не могла ответить на её, такой вроде бы простой вопрос, так как сама стояла совершенно опешив, не находя никакого объяснения этому «абсурдному» явлению…
Стелла тихонько протянула ручку к своему близнецу и коснулась протянутых к ней таких же маленьких пальчиков. Я хотела крикнуть, что это может быть опасно, но, увидев её довольную улыбку – промолчала, решив посмотреть, что же будет дальше, но в то же время была настороже, на тот случай, если вдруг что-то пойдёт не так.
– Так это же я… – в восторге прошептала малышка. – Ой, как чудесно! Это же, правда я…
Её тоненькие пальчики начали ярко светиться, и «вторая» Стелла стала медленно таять, плавно перетекая через те же самые пальчики в «настоящую», стоявшую около меня, Стеллу. Её тело стало уплотняться, но не так, как уплотнялось бы физическое, а как будто стало намного плотнее светиться, наполняясь каким-то неземным сиянием.
Вдруг я почувствовала за спиной чьё-то присутствие – это опять была наша знакомая, Атенайс.
– Прости меня, светлое дитя, но ты ещё очень нескоро придёшь за своим «отпечатком»… Тебе ещё очень долго ждать, – она внимательнее посмотрела мне в глаза. – А может, и не придёшь вовсе…
– Как это «не приду»?!.. – испугалась я. – Если приходят все – значит приду и я!
– Не знаю. Твоя судьба почему-то закрыта для меня. Я не могу тебе ничего ответить, прости…
Я очень расстроилась, но, стараясь изо всех сил не показать этого Атенайс, как можно спокойнее спросила:
– А что это за «отпечаток»?
– О, все, когда умирают, возвращаются за ним. Когда твоя душа кончает своё «томление» в очередном земном теле, в тот момент, когда она прощается с ним, она летит в свой настоящий Дом, и как бы «возвещает» о своём возвращении… И вот тогда, она оставляет эту «печать». Но после этого, она должна опять возвратиться обратно на плотную землю, чтобы уже навсегда проститься с тем, кем она была… и через год, сказав «последнее прощай», оттуда уйти… И вот тогда-то, эта свободная душа приходит сюда, чтобы слиться со своей оставленной частичкой и обрести покой, ожидая нового путешествия в «старый мир»…
Я не понимала тогда, о чём говорила Атенайс, просто это звучало очень красиво…
И только теперь, через много, много лет (уже давно впитав своей «изголодавшейся» душой знания моего удивительного мужа, Николая), просматривая сегодня для этой книги своё забавное прошлое, я с улыбкой вспомнила Атенайс, и, конечно же, поняла, что то, что она называла «отпечатком», было просто энергетическим всплеском, который происходит с каждым из нас в момент нашей смерти, и достигает именно того уровня, на который своим развитием сумел попасть умерший человек. А то, что Атенайс называла тогда «прощание» с тем, «кем она была», было ни что иное, как окончательное отделение всех имеющихся «тел» сущности от её мёртвого физического тела, чтобы она имела возможность теперь уже окончательно уйти, и там, на своём «этаже», слиться со своей недостающей частичкой, уровня развития которой она, по той или иной причине, не успела «достичь» живя на земле. И этот уход происходил именно через год.
Но всё это я понимаю сейчас, а тогда до этого было ещё очень далеко, и мне приходилось довольствоваться своим, совсем ещё детским, пониманием всего со мной происходящего, и своими, иногда ошибочными, а иногда и правильными, догадками…
– А на других «этажах» сущности тоже имеют такие же «отпечатки»? – заинтересованно спросила любознательная Стелла.
– Да, конечно имеют, только уже иные, – спокойно ответила Атенайс. – И не на всех «этажах» они так же приятны, как здесь… Особенно на одном…
– О, я знаю! Это, наверное «нижний»! Ой, надо обязательно туда пойти посмотреть! Это же так интересно! – уже опять довольно щебетала Стелла.
Было просто удивительно, с какой быстротой и лёгкостью она забывала всё, что ещё минуту назад её пугало или удивляло, и уже опять весело стремилась познать что-то для неё новое и неведомое.
– Прощайте, юные девы… Мне пора уходить. Да будет ваше счастье вечным… – торжественным голосом произнесла Атенайс.
И снова плавно взмахнула «крылатой» рукой, как бы указывая нам дорогу, и перед нами тут же побежала, уже знакомая, сияющая золотом дорожка…
А дивная женщина-птица снова тихо поплыла в своей воздушной сказочной ладье, опять готовая встречать и направлять новых, «ищущих себя» путешественников, терпеливо отбывая какой-то свой особый, нам непонятный, обет…
– Ну что? Куда пойдём, «юная дева»?.. – улыбнувшись спросила я свою маленькую подружку.
– А почему она нас так называла? – задумчиво спросила Стелла. – Ты думаешь, так говорили там, где она когда-то жила?
– Не знаю… Это было, наверное, очень давно, но она почему-то это помнит.
– Всё! Пошли дальше!.. – вдруг, будто очнувшись, воскликнула малышка.
На этот раз мы не пошли по так услужливо предлагаемой нам дорожке, а решили двигаться «своим путём», исследуя мир своими же силами, которых, как оказалось, у нас было не так уж и мало.
Мы двинулись к прозрачному, светящемуся золотом, горизонтальному «тоннелю», которых здесь было великое множество, и по которым постоянно, туда-сюда плавно двигались сущности.
– Это что, вроде земного поезда? – засмеявшись забавному сравнению, спросила я.
– Нет, не так это просто… – ответила Стелла. – Я в нём была, это как бы «поезд времени», если хочешь так его называть…
– Но ведь времени здесь нет? – удивилась я.
– Так-то оно так, но это разные места обитания сущностей… Тех, которые умерли тысячи лет назад, и тех, которые пришли только сейчас. Мне это бабушка показала. Это там я нашла Гарольда… Хочешь посмотреть?
Ну, конечно же, я хотела! И, казалось, ничто на свете не могло бы меня остановить! Эти потрясающие «шаги в неизвестное» будоражили моё и так уже слишком живое воображение и не давали спокойно жить, пока я, уже почти падая от усталости, но дико довольная увиденным, не возвращалась в своё «забытое» физическое тело, и не валилась спать, стараясь отдохнуть хотя бы час, чтобы зарядить свои окончательно «севшие» жизненные «батареи»…
Так, не останавливаясь, мы снова преспокойно продолжали своё маленькое путешествие, теперь уже покойно «плывя», повиснув в мягком, проникающем в каждую клеточку, убаюкивающем душу «тоннеле», с наслаждением наблюдая дивное перетекание друг через друга кем-то создаваемых, ослепительно красочных (наподобие Стеллиного) и очень разных «миров», которые то уплотнялись, то исчезали, оставляя за собой развевающиеся хвосты сверкающих дивными цветами радуг…
Неожиданно вся эта нежнейшая красота рассыпалась на сверкающие кусочки, и нам во всем своём великолепии открылся блистающий, умытый звёздной росой, грандиозный по своей красоте, мир…
У нас от неожиданности захватило дух…
– Ой, красоти-и-ще како-о-е!.. Ма-а-амочка моя!.. – выдохнула малышка.
У меня тоже от щемящего восторга перехватило дыхание и, вместо слов, вдруг захотелось плакать…
– А кто же здесь живёт?.. – Стелла дёрнула меня за руку. – Ну, как ты думаешь, кто здесь живёт?..
Я понятия не имела, кем могут быть счастливые обитатели подобного мира, но мне вдруг очень захотелось это узнать.
– Пошли! – решительно сказала я и потянула Стеллу за собой.
Нам открылся дивный пейзаж… Он был очень похож на земной и, в то же время, резко отличался. Вроде бы перед нами было настоящее изумрудно зелёное «земное» поле, поросшее сочной, очень высокой шелковистой травой, но в то же время я понимала, что это не земля, а что-то очень на неё похожее, но чересчур уж идеальное… ненастоящее. И на этом, слишком красивом, человеческими ступнями не тронутом, поле, будто красные капли крови, рассыпавшись по всей долине, насколько охватывал глаз, алели невиданные маки… Их огромные яркие чашечки тяжело колыхались, не выдерживая веса игриво садившихся на цветы, большущих, переливающихся хаосом сумасшедших красок, бриллиантовых бабочек… Странное фиолетовое небо полыхало дымкой золотистых облаков, время от времени освещаясь яркими лучами голубого солнца… Это был удивительно красивый, созданный чьей-то буйной фантазией и слепящий миллионами незнакомых оттенков, фантастический мир… А по этому миру шёл человек… Это была малюсенькая, хрупкая девочка, издали чем-то очень похожая на Стеллу. Мы буквально застыли, боясь нечаянно чем-то её спугнуть, но девочка, не обращая на нас никакого внимания, спокойно шла по зелёному полю, почти полностью скрывшись в сочной траве… а над её пушистой головкой клубился прозрачный, мерцающий звёздами, фиолетовый туман, создавая над ней дивный движущийся ореол. Её длинные, блестящие, фиолетовые волосы «вспыхивали» золотом, ласково перебираемые лёгким ветерком, который, играясь, время от времени шаловливо целовал её нежные, бледные щёчки. Малютка казалась очень необычной, и абсолютно спокойной…

Кетоновые тела — Википедия. Что такое Кетоновые тела

Кето́новые тела́ (синоним: ацето́новые тела, ацето́н [распространённый медицинский жаргонизм]) — группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА[2]:

Историческая справка

Прежние представления о том, что кетоновые тела являются промежуточными продуктами бета-окисления жирных кислот, оказались ошибочными[2]:

  • Во-первых, в обычных условиях промежуточными продуктами бета-окисления жирных кислот являются КоА-эфиры этих кислот: β-оксибутирил-КоА или ацетоацетил-КоА.
  • Во-вторых, β-оксибутирил-КоА, образующийся в печени при бета-окислении жирных кислот, имеет L-конфигурацию, в то время как β-оксибутират, обнаруживаемый в крови, представляет собой D-изомер. Именно β-оксибутират D-конфигурации образуется в ходе метаболического пути синтеза β-окси-β-метилглутарил-КоА.

Метаболизм кетоновых тел

Ацетон в плазме крови в норме присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоуксусной кислоты и не имеет определённого физиологического значения[2]

Нормальное содержание кетоновых тел в плазме крови человека и большинства млекопитающих (за исключением жвачных) составляет 1…2 мг% (по ацетону). При увеличении их концентрации свыше 10…15 мг% они преодолевают почечный порог и определяются в моче. Наличие кетоновых тел в моче всегда указывает на развитие патологического состояния.

Кетоновые тела синтезируются в печени из ацетил-КоА:[2]

На первом этапе из двух молекул ацетил-КоА синтезируется ацетоацетил-КоА. Данная реакция катализируется ферментом ацетоацетил-КоА-тиолазой:
Ac−КоА + Ac−КоА → .
Затем под влиянием фермента гидроксиметилглутарил-КоА-синтазы присоединяется ещё одна молекула ацетил-КоА:
H3C−CO−CH2−CO−S−КоА + Ac−КоА → .
Образовавшийся β-гидрокси-β-метилглутарил-КоА (HMG-KoA) способен под действием фермента гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоуксусную кислоту (ацетоацетат) и ацетил-КоА:
HOOC−CH2−COH(CH3)−CH2−CO−S−КоА → + Ac—КоА.
Ацетоуксусная кислота способна восстанавливаться при участии НАД-зависимой D-β-оксибутиратдегидрогеназы; при этом образуется D-β-оксимасляная кислота (D-β-оксибутират). Фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры.[2]
H3C−CO−CH2−COOH + NADH → .
Ацетоуксусная кислота в процессе метаболизма способна окисляться до ацетона с выделением молекулы углекислого газа:[1]
H3C−CO−CH2−COOHCO2 + .

Альтернативный путь

Существует второй путь синтеза кетоновых тел:

Образовавшийся путём конденсации двух молекул ацетил-КоА ацетоацетил-КоА способен отщеплять кофермент A с образованием свободной ацетоуксусной кислоты[3]. Процесс катализирует фермент ацетоацетил-КоА-гидролаза (деацилаза), однако данный путь не имеет существенного значения в синтезе ацетоуксусной кислоты, так как активность деацилазы в печени низкая.[2]
+ H2O → + КоА-SH.

Биологическая роль кетоновых тел

В плазме крови здорового человека кетоновые тела содержатся в весьма незначительных концентрациях. Однако при патологических состояниях (длительное голодание, тяжёлая физическая нагрузка, тяжёлая форма сахарного диабета) концентрация кетоновых тел может значительно повышаться и достигать 20 ммоль/л (кетонемия). Кетонемия, ацетонемия (повышение концентрации кетоновых тел в крови) возникает при нарушении равновесия — скорость синтеза кетоновых тел превышает скорость их утилизации периферическими тканями организма.[2]

За последние десятилетия накопились сведения, указывающие на важное значение кетоновых тел в поддержании энергетического баланса. Кетоновые тела — топливо для мышечной ткани, почек и действуют, вероятно, как часть регуляторного механизма с обратной связью, предотвращая излишнюю мобилизацию жирных кислот из жировых депо.[2] Во время голодания кетоновые тела являются одним из основных источников энергии для мозга.[4][5]Печень, синтезируя кетоновые тела, не способна использовать их в качестве энергетического материала (не располагает соответствующими ферментами).

В периферических тканях β-оксимасляная кислота окисляется до ацетоуксусной кислоты, которая активируется с образованием соответствующего КоА-эфира (ацетоацетил-КоА). Существует два ферментативных механизма активации:[2]

  • первый путь — с использованием АТФ и HS-КоА, аналогичный пути активации жирных кислот:

H3C—CO—CH2—COOH (Ацетоуксусная кислота)

|

+ АТФ + HS-КоА Ацил-КоА-синтетаза  АМФ + ФФн

H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

  • второй путь — перенос Коэнзима А от сукцинил-КоА на ацетоуксусную кислоту:

HOOC—CH2—CH2—CO—S-КоА (Сукцинил-КоА+ H3C—CO—CH2—COOH (Ацетоуксусная кислота)

↓↑

HOOC—CH2—CH2—COOH (Сукцинат+ H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

Образовавшийся в ходе этих реакций ацетоацетил-КоА в дальнейшем подвергается тиолитическому расщеплению в митохондриях с образованием двух молекул ацетил-КоА, которые, в свою очередь, являются сырьём для цикла Кребса (цикл трикарбоновых кислот), где окисляются до CO2 и H2O.

H3C—CO—CH2—CO—S-КоА (Ацетоацетил-КоА)

|

+ HS-КоА  H3C—CO—S-КоА

H3C—CO—S-КоА ( Ацетил-КоА)

Повышение содержания кетоновых тел в организме может быть связано с дефицитом углеводов в обеспечении организма энергией, а также происходит, когда скорость синтеза кетоновых тел превышает скорость их утилизации.

Лабораторная диагностика

Для качественного определения содержания кетоновых тел в моче в лабораторных условиях используются цветные пробы Ланге, Легаля, Лестраде и Герхарда.

Примечания

См. также

(53) Кетоновые тела — это способ транспорта ацетильной группы

При состояниях, сопровождающихся снижением глюкозы крови, клетки органов и тканей испытывают энергетический голод. Так как окисление жирных кислот процесс «трудоемкий», а нервная ткань вообще неспособна окислять жирные кислоты, то печень облегчает использование этих кислот тканями, заранее окисляя их до уксусной кислоты и переводя последнюю в транспортную форму – кетоновые тела.

К кетоновым телам относят три соединения близкой структуры – ацетоацетат3-гидроксибутират и ацетон.

Строение кетоновых тел

Стимулом для образования кетоновых тел служит поступление большого количества жирных кислот в печень. Как уже указывалось, при состояниях, активирующих липолиз в жировой ткани, не менее 30% образованных жирных кислот задерживаются печенью. К таким состояниям относится голоданиесахарный диабет I типа, длительные физические нагрузки. Так как синтез ТАГ в этих условиях невозможен, то жирные кислоты из цитозоля попадают в митохондрии и окисляются с образованием кетонов. Кроме отмеченных ситуаций, количество кетоновых тел в крови возрастает при алкогольном отравлении и потреблении жирной пищи. При богатой жирами диете, особенно у детей, жирные кислоты не успевают включиться в состав ТАГ и ЛПОНП и частично переходят в митохондрии, что увеличивает синтез кетоновых тел. При алкогольном отравлении субстратом для синтеза кетонов является ацетил-SКоА, синтезируемый приобезвреживании этанола.

В обычных условиях синтез кетоновых тел также идет, хотя в гораздо меньшем количестве. Для этого используются как жирные кислоты, так и безазотистые остатки кетогенных и смешанных аминокислот. (как это?)

У детей до 7 лет под влиянием различных стимулов (краткое голодание, инфекции, эмоциональное возбуждение) ускоряется синтез кетоновых тел и может легко возникать кетоацидоз, сопровождающийся неукротимой рвотой («ацетонемическая рвота»). Причиной этому служит неустойчивость углеводного обмена и малые запасы гликогена у детей, что усиливает липолиз в адипоцитах, накопление жирных кислот в крови и, следовательно, кетогенез в печени.

Синтез кетоновых тел (кетогенез)

Синтез ацетоацетата происходит только в митохондриях печени, далее он либо восстанавливается до 3-гидроксибутирата, либо спонтанно декарбоксилируется до ацетона. Далее все три соединения поступают в кровь и разносятся по тканям. Ацетон, как летучее вещество, легко удаляется с выдыхаемым воздухом и потом. Все кетоновые тела могут выделяться с мочой.

Реакции синтеза и утилизации кетоновых тел

Используются кетоновые тела клетками всех тканей, кроме печени и эритроцитов. Особенно активно, даже в норме, они потребляются миокардом и корковым слоем надпочечников.

Реакции утилизации кетоновых тел примерно совпадают с обратным направлением реакций синтеза. В цитозоле 3-гидроксибутират окисляется, образующийся ацетоацетат проникает в митохондрии, активируется за счет сукцинил-SКоА и превращается в ацетил-SКоА, который сгорает в ЦТК.

Регуляция синтеза кетоновых тел. Регуляторный фермент синтеза кетоновых тел — ГМГ-КоА синтаза.

  • ГМГ-КоА-синтаза — индуцируемый фермент; его синтез увеличивается при повышении концентрации жирных кислот в крови. Концентрация жирных кислот в крови увеличивается при мобилизации жиров из жировой ткани под действием глюкагона, адреналина, т.е. при голодании или физической работе.

  • ГМГ-КоА-синтаза ингибируется высокими концентрациями свободного кофермента А.

  • Когда поступление жирных кислот в клетки печени увеличивается, КоА связывается с ними, концентрация свободного КоА снижается, и фермент становится активным.

  • Если поступление жирных кислот в клетки печени уменьшается, то, соответственно, увеличивается концентрация свободного КоА, ингибирующего фермент. Следовательно, скорость синтеза кетоновых тел в печени зависит от поступления жирных кислот.

Окисление кетоновых тел в периферических тканях

При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом

408

глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.

β-Гидроксибутират (рис. 8-34), попадая в клетки, дегидрируется NAD-зависимой дегидрогеназой и превращается в ацетоацетат. Ацетоацетат активируется, взаимодействуя с сук-цинил-КоА — донором КоА:

Ацетоацетат + Сукцинил-КоА → Ацетоацетил- КоА + Сукцинат.

Рис. 8-34. Окисление кетоновых тел в тканях.

Реакцию катализирует сукцинил-КоА-ацето-ацетат-КоА-трансфераза. Этот фермент не синтезируется в печени, поэтому печень не использует кетоновые тела как источники энергии, а производит их «на экспорт». Кетоновые тела — хорошие топливные молекулы; окисление одной молекулы β-гидроксибутирата до СО2 и Н2О обеспечивает синтез 27 молекул АТФ. Эквивалент одной макроэргической связи АТФ (в молекуле сукцинил-КоА) используется на активацию ацетоацетата, поэтому суммарный выход АТФ при окислении одной молекулы β-гидроксибутирата — 26 молекул.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *