Какое значение в свертывании крови имеет тромбин – 36. Тромбоциты, их количество и функции. Механизм свертывания крови. Противосвертывающая система крови. Изменение свертываемости крови при мышечной работе.

Значение свертывания крови | KtoiKak.com

Значение свертывания крови для здоровья человека очень большое, ведь без этого процесса люди бы не могли жить. В чем заключается значение свертывания крови Вы узнаете из этой статьи.

Значение свертывания крови

Что такое кровь?

Кровь — это соединительная жидкая ткань организма, которая выполняет ряд важных функций для обеспечения его жизнедеятельности. Кровь по своему составу является сочетание жидкой части плазмы и различных клеток. В теле взрослого человека она составляет примерно 6-8% от массы тела, а в теле ребенка до 8-9%.

Что такое свертывания крови?

Свертывания крови -это достаточно сложный ферментативный процесс, который характеризуется тем, что во время него растворимый белок — фибриноген превращается в нерастворимый белок — фибрин.
Процессе свертывания крови проходит в три основных этапа:

  1. На первом этапе с помощью травмирующего агента происходит разрушение тромбоцитов и высвобождение фермента тромбопластин.
  2. Второй этап. Тромбопластин катализирует превращение протромбина (это белок плазмы крови) в тромбин. Протромбин — представляет собой неактивный белок плазмы крови, образуется в печени с помощью витамина К. На тромбин он может превращаться только при наличии в плазме ионов кальция.
  3. Третий этап — тромбин начинает катализировать превращение растворимого белка фибриногена в нерастворимый белок в воде — фибрин. Нити данного фибрина плотно переплетаются и образуют сетку. Между нитями клетки крови задерживаются и плотно закрывают рану.

Если все хорошо, то через 5-10 минут после повреждения на поверхности раны в процессе свертывания крови должно образоваться кровяной сгусток — тромб, который быстро закупоривает сосуд и тем самым прекращает кровотечение.

В чем значение свертывания крови?

Свертывание крови — это важная защитная реакция, которая предотвращает кровопотери организма.

Надеемся, что из этой статьи вы узнали в чем смысл свертывания крови.

Биологическое значение свертывания крови. Свертывание крови

Свертывание крови. Клетки многоклеточного организма живут и контактируют со своей собственной жидкой средой. Эта среда состоит из плазмы крови, тканевой жидкости и лимфы и называется жидкой внутренней средой организма. По составу она отличается от внешней среды, окружающей целый организм. Поэтому существует жизненно важная необходимость в случаях нарушения его целостности в сохранении этой жидкой внутренней среды в пределах ее естественного русла. У высших позвоночных животных и человека в процессе эволюции возникла система свертывания крови. Причем значение свертывающей системы у высших организмов значительно шире понятия гемостаза или остановки кровотечения при нарушении целостности сосудистой стенки.

Свертывание крови — это защитная реакция организма. Выпущенная из сосуда кровь свертывается в течение 3-4 минут, т. е. переходит из жидкого состояния в желеобразное. Свертывание крови обусловлено тем, что растворимый белок плазмы крови фибриноген превращается в нерастворимый фибрин.

Свертывание крови происходит в несколько этапов. Первый этап — первичный гемостаз, или предфаза, как бы предшествует и запускает второй этап — собственно свертывание, который, в свою очередь, представляет собой многофазовый процесс. Его суть составляют химические ферментативные реакции, в результате которых в крови появляются активные вещества — факторы свертывания.

Первичный гемостаз

Это сложный физиологический процесс, протекающий в несколько фаз. Главные его участники — это стенка сосуда, нервная система и тромбоциты крови. Первичный гемостаз начинается прежде всего с первичного сосудистого спазма рефлекторной природы. Затем начинается так называемая эндотелиально-тромбоцитарная реакция. На месте травмы эндотелий сосуда меняет свой заряд. Тромбоциты, занимающие в сосуде краевое положение, начинают адгезировать (прилипать) к поврежденной поверхности сосуда и агглютинировать (склеиваться) между собой. В результате через 2-3 минуты наступает третья фаза — фаза образования «тромбоцитарного гвоздя». В течение этой фазы происходит остановка кровотечения, однако свертывания крови еще не произошло; плазма крови остается жидкой. Образовавшийся тромб рыхлый, и еще в течение короткого времени процессы имеют обратимый характер. Четвертая фаза заключается в том, что в образовавшемся тромбе начинаются морфологические превращения тромбоцитов, которые приведут к их необратимым изменениям и разрушению. Это вязкий метаморфоз тромбоцитов. В результате вязкого метаморфоза из тромбоцитов выходят содержащиеся там факторы свертывания. Их взаимодействие приводит к появлению следов тромбина, который и запускает каскад химических ферментативных реакций — ферментативное свертывание.

Фер

11.Тромбоциты. Строение. Функции, значение в процессах свёртывания крови.

Тромбоциты (от греческого θρόμβος, «сгусток» и κύτος, «клетка») – это небольшие (2-4 мкм диаметром) дискообразные безъядерные клеточные фрагменты, циркулирующие в кровотоке, чутко реагирующие на повреждения сосуда и играющие критически важную роль в гемостазе и тромбозе. Т. образуются при фрагментации своих предшественников мегакариоцитов в костном мозге. Из одного мегакариоцита образуется от 5 до 10 тысяч тромбоцитов. Средняя продолж. жизни т. составляет 5-9 дней. Старые т. разрушаются в процессе фагоцитоза в селезёнке и клетками Купфера в печени. 5 форм тромбоцитов: юные (0 — 0,8 %), зрелые (90,3 — 95,1 %), старые (2,2 — 5,6 %), формы раздражения (0,8 — 2,3%) и дегенеративные формы (0 — 0,2%). Выполняют две основных

функции:формирование тромбоцитарного агрегата, первичной пробки, закрывающей место повреждения сосуда; предоставление своей поверхности для ускорения ключевых реакций плазменного свертывания. Относительно недавно установлено также, что т. играют важнейшую роль в заживлении и регенерации поврежденных тканей, освобождая из себя в поврежденные ткани факторы роста, которые стимулируют деление и рост поврежденных клеток. Факторы роста представляют собой полипептидные молекулы различного строения и назначения.Уменьшение количества т. в крови может приводить к кровотечениям. Увеличение же их количества ведет к формированию сгустков крови (тромбоз), которые могут перекрывать кровеносные сосуды и приводить к таким патологическим состояниям, как инсульт, инфаркт миокарда, легочная эмболия или закупоривание кровеносных сосудов в других органах тела.
Участие в свертывании.
Особенностью Т.является его способность к активации — быстрому и как правило необратимому переходу в новое состояние. Стимулом активации может служить практически любое возмущение окружающей среды, вплоть до простого механического напряжения. Однако основными физиологическими активаторами т. считаются коллаген, тромбин (основной белок плазменной системы свертывания), АДФ и тромбоксан А2. Активированные тромбоциты становятся способны прикрепляться к месту повреждения и друг к другу, формируя пробку, перекрывающую повреждение. Кроме того, они участвуют в плазменном свертывании двумя основными способами — экспонирование прокоагулянтной мембраны и секреция α-гранул.
Главными для свертывания являются α-гранулы, содержащие высокомолекулярные белки, такие как фактор V и фибриноген.

12.Группы крови. Системы ав0, Rh. Принципы подбора донорской крови. Факторы риска для реципиента.

Все люди подразделяются по принадлежности к определ. группе крови. У каждого человека группа крови индивидуальная. Принадлежность к определённой группе крови является врождённой и не изменяется на протяжении всей жизни. Наибольшее значение имеет разделение крови на 4 группы по системе «AB0» и на две группы по системе «резус фактор». Соблюдение совместимости крови именно по этим группам имеет особое значение для безопасного переливания крови. Люди с I группой крови являются универсальными донорами, а люди с IV группой — универсальными реципиентами. Существуют и другие, менее значимые группы крови. Гру́ппа кро́ви

— описание индивидуальных антигенных характеристик эритроцитов, определяемое с помощью методов идентификации специфических групп углеводов и белков, включённых в мембраны эритроцитов животных.Термин «группа крови» характеризует системы эритроцитарных антигенов, контролируемых определенными локусами, содержащими различное число аллельных генов, таких, например, как A, B и 0 («ноль») в системе AB0. Термин «тип крови» отражает её антигенный фенотип (полный антигенный «портрет», или антигенный профиль) — совокупность всех групповых антигенных характеристик крови, серологическое выражение всего комплекса наследуемых генов группы крови.

Система AB0. Предложена ученым Карлом Ландштейнером в 1900 году. Известно несколько основных групп аллельных генов этой системы: A¹, A², B и 0. Генный локус для этих аллелей находится на длинном плече хромосомы 9. Основными продуктами первых трёх генов — генов A¹, A² и B, но не гена 0 — являются специфические ферменты гликозилтрансферазы, относящиеся к классу трансфераз. При этом все три типа гликозилтрансфераз присоединяют переносимый углеводный радикал к альфа-связующему звену коротких олигосахаридных цепочек. Субстратами гликозилирования этими гликозилтрансферазами являются, в частности и в особенности, как раз углеводные части гликолипидов и гликопротеидов мембран эритроцитов, и в значительно меньшей степени — гликолипиды и гликопротеиды других тканей и систем организма. Именно специфическое гликозилирование гликозилтрансферазой A или B одного из поверхностных антигенов — агглютиногена — эритроцитов тем или иным сахаром и образует специфический агглютиноген A или B. В плазме крови человека могут содержаться агглютинины α и β, в эритроцитах — агглютиногены A и B, причём из белков A и α содержится один и только один, то же самое — для белков B и β.Существует четыре допустимых комбинации; то, какая из них характерна для данного человека, определяет его группу крови: α и β: 1(0),A и β: 2(A),α и B: 3 (B),A и B: 4(AB).

Система Rh (резус-система).Резус крови — это антиген (белок), который находится на поверхности красных кровяных телец (эритроцитов). Он обнаружен в 1940 году Карлом Ландштейнером и А.Вейнером. Около 85 % европейцев (99 % индийцев и азиатов) имеют резус и соответственно являются резус-положительными. Остальные же 15 % (7 % у африканцев), у которых его нет, — резус-отрицательный. Резус крови играет важную роль в формировании так называемой гемолитической желтухи новорожденных, вызываемой вследствие резус-конфликта иммунизованной матери и эритроцитов плода. Известно, что резус крови — это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D (85 %), С (70 %), Е (30 %), е (80 %) — они же и обладают наиболее выраженной антигенностью. Система резус не имеет в норме одноименных аг­глютининов, но они могут появиться, если человеку с резус-отрицательной кровью перелить резус-положительную кровь.

Теория совместимости групп крови AB0 возникла на заре переливания крови, во время Второй Мировой войны, в условиях катастрофической нехватки донорской крови.

Доноры и реципиенты крови должны иметь «совместимые» группы крови. В России по жизненным показаниям и при отсутствии одногруппных по системе АВ0 компонентов крови (за исключением детей) допускается переливание резус-отрицательной крови 0(I) группы реципиенту с любой другой группой крови в количестве до 500 мл. Резус-отрицательная эритроцитная масса или взвесь от доноров группы А(II) или В(III), по витальным показаниям могут быть перелиты реципиенту с AB(IV) группой, независимо от его резус-принадлежности. При отсутствии одногруппной плазмы реципиенту может быть перелита плазма группы АВ(IV).

Несовместимость крови группы 0(I)Rh- с другими группами наблюдалась относительно редко, и на это обстоятельство длительное время не обращали должного внимания. Таблица ниже иллюстрирует, люди с какими группами крови могли отдавать / получать кровь (знаком Да отмечены совместимые комбинации). Например, обладатель группы A(II)Rh− может получать кровь групп 0(I)Rh− или A(II)Rh− и отдавать кровь людям, имеющим кровь групп AB(IV)Rh+, AB(IV)Rh−, A(II)Rh+ или A(II)Rh−. Сегодня ясно, что другие системы антигенов также могут вызывать нежелательные последствия при переливании крови.Поэтому одной из возможных стратегий службы переливания крови может быть создание системы заблаговременного криоконсервирования собственных форменных элементов крови для каждого человека. В плазме групповые антигены эритроцитов I группы A и B отсутствуют или их количество очень мало, поэтому раньше полагали, что кровь I группы можно переливать пациентам с другими группами в любых объёмах без опасения. Однако в плазме группы I содержатся агглютинины α и β, и эту плазму можно вводить лишь в очень ограниченном объёме, при котором агглютинины донора разводятся плазмой реципиента и агглютинация не происходит. В плазме IV(AB) группы аггллютинины не содержатся, поэтому плазму IV(AB) группы можно переливать реципиентам любой группы.При переливании крови от донора к реципиенту возможна агглютинация (склеивание) и гемолиз (разрушение) эритроцитов. Чтобы этого не происходило, необходимо учитывать группы крови, открытые Карлом Ландштейнером и Янским в 1900 году. Агглютинацию вызывают белки, находящиеся на поверхности эритроцита — антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины). Для каждой группы характерны различные антигены и антитела. Переливание обычно проводится лишь между обладателями одной группы крови. Вливание крови несовместимой группы может привести к иммунологической реакции, склеиванию (агрегации) эритроцитов, которая может выражаться в гемолитической анемии, почечной недостаточности, шоке и летальном исходе.

36. Тромбоциты, их количество и функции. Механизм свертывания крови. Противосвертывающая система крови. Изменение свертываемости крови при мышечной работе.

Тромбоциты – безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 ч 109/л.

Тромбоцит содержит две зоны: гранулу (центр, в котором находятся гликоген, факторы свертывания крови и т. д.) и гиаломер (периферическую часть, состоящую из эндоплазматического ретикулума и ионов Ca).

Тромбоциты, или кровяные пластинки, представляют собой образования овальной или округлой формы диаметром 2—5 мкм. Количество в крови тромбоцитов составляет 180—320 х 109 (180 000—320 000 в 1 мм3). Увеличение содержания тромбоцитов в периферической крови называетсятромбоцитозом, уменьшение — тромбоцитопенией.

Свойства тромбоцитов. Тромбоциты способны к фагоцитозу и передвижению за счет образования ложноножек (псевдоподий). К физиологическим свойствам тромбоцитов также относятся их способность прилипать к чужеродной поверхности и склеиваться между собойпод влиянием разнообразных причин. Тромбоциты очень легко разрушаются. Они способны выделять и поглощать некоторые биологически активные вещества: серотонин, адреналин, норадреналин. Все рассмотренные особенности кровяных пластинок обусловливают их участие в остановке кровотечения.

Функции тромбоцитов. Тромбоциты принимают активное участие в процессе свертывания крови и фибринолиза (растворение кровяного сгустка).

В пластинках обнаружены биологически активные соединения, за счет которых они участвуют востановке кровотечения (гемостазе).

Кроме того, тромбоциты выполняют защитную функцию за счет склеивания (агглютинации) бактерий и фагоцитоза, они способны вырабатывать некоторые ферменты (амилолитические, протеолитические и др.), необходимые не только для нормальной жизнедеятельности пластинок, но и для процесса остановки кровотечения. Тромбоциты оказывают влияние на состояние гистогематических барьеров, изменяя проницаемость стенки капилляров (выделение в кровоток серотонина и особого белка — протеина S).

Фазы процесса свертывания крови.

1 фаза — образование активных протромбиназных комплексов: неактивная протромбиназа (X) становится активной (Xа). В зависимости от матрицы 1 фаза может осуществляться по внешнему и внутреннему механизму.

Внешний механизм — начинается с повреждения тканей. Из них освобождаются фосфоминиды, которые служат матрицей, на матрице активизируется X плазменный фактор, адсорбируется V плазменный фактор и Ca2+ — это активный протромбиназный комплекс. Это простой механизм, осуществляется быстро, но образуется мало протромбиназных комплексов на матрице: Xa + Va + Ca2+

Внутренний механизм — начинается с повреждения сосудов и активации XII плазменного фактора. 3 пути его активации. В результате травмы изменяется заряд сосудистой стенки, обнажаются коллагеновые волокна и базальная мембрана, XII фактор адсорбируется на них и активируется (XIIa). Активация компонентами системы фибринолиза (белок плазмин). Активация компонентами кининовой системы — высокомолекулярный кининоген (фактор Фитуджеральда), прекаллекреин (фактор Флетчера).

XIIa вызывает активацию XI фактора (XIa). Образуется комплекс XIIa + XШa + Ca2+, под действием которого активируются VIII и IX факторы. Образуется 2-й промежуточный комплекс: VIIIa + Ixa + Ca2+. Эти факторы способствуют образованию комплекса Va + Xa + Ca2+ на матрице, которой чаще всего является 3-й тромбоцитарный фактор (Р3).

2 фаза — превращение протромбина (II) в тромбин (IIa). Эта фаза является ферментативной. Фермент — активный протромбиназный комплекс, обеспечивающий протеолитическое действие и отщепляющий от протромбина полипептиды (1 и 2), в результате чего образуется тромбин.

3 фаза — образование фибриновых нитей.

Протекает в 3 этапа:

1 этап: ферментативный: фермент — белок тромбин — отщепляет от фибриногена тормозную группу превращая его в фибрин-мономер.

2 этап: физико-химический — реакция колгемеризации — из фибрин-мономера образуется фибрин-полимер (S). Эта форма растворяется в некоторых жидкостях (раствор мочевины).

3 этап — ферментативный: — фермент-стабилизирующие факторы: XIII плазменный фактор, фибринстабилизирующие факторы тромбоцитов, эритроцитов, лейкоцитов — превращают фибрин-S в фибрин J (нерастворимые нити).

Все лекции по курсу Физиология / КРОВЬ-3

Лекция 3. СВЕРТЫВАЮЩАЯ И АНТИСВЕРТЫВАЮЩАЯ СИСТЕМЫ

КРОВИ.

Сущность и значение свертывания крови.

Если выпущенную из кровеносного сосуда кровь оставить на некоторое время, то из жидкости она вначале превращается в желе, а затем в крови организуется более или менее плотный сгусток, который, сокращаясь, выжимает из себя жидкость, называемую кровяной сывороткой. Это — плазма, лишенная фибрина. Описанный процесс называется свертыванием крови (гемокоагуляцией). Его сущность заключается в том, что растворенный в плазме белок фибриноген в определенных условиях переходит в нерастворимое состояние и выпадает в осадок в виде длинных нитей фибрина. В ячейках этих нитей, как в сетке, застревают клетки и коллоидное состояние крови в целом меняется. Значение этого процесса заключается в том, что свернувшаяся кровь не вытекает из раненного сосуда, предотвращая смерть организма от кровопотери.

Свертывающая система крови. Ферментативная теория свертывания.

Первая теория, объясняющая процесс свертывания крови работой специальных ферментов, была разработана в 1902 г. русским ученым Шмидтом. Он считал, что свертывание протекает в две фазы. В первую один из белков плазмы протромбин под влиянием освобождающихся из разрушенных при травме клеток крови, особенно тромбоцитов, ферментов (тромбокиназы) и ионов Са переходит в фермент тромбин. На второй стадии под влиянием фермента тромбина растворенный в крови фибриноген превращается в нерастворимый фибрин, который и заставляет кровь свертываться. В последние годы жизни Шмидт стал выделять в процессе гемокоагуляции уже 3 фазы: 1- образование тромбокиназы, 2- образование тромбина. 3- образование фибрина.

Дальнейшее изучение механизмов свертывания показало, что это представление весьма схематично и не полностью отражает весь процесс. Основное заключается в том, что в организме отсутствует активная тромбокиназа, т.е. фермент, способный превратить протромбин в тромбин (по новой номенклатуре ферментов этот следует называть протромбиназой). Оказалось, что процесс образования протромбиназы очень сложен, в нем участвует целый ряд т.н. тромбогенных белков-ферментов, или тромбогенных факторов, которые, взаимодействуя в каскадном процессе, все необходимы для того, чтобы свертывание крови осуществилось нормально. Кроме того, было обнаружено, что процесс свертывания не кончается образованием фибрина, ибо одновременно начинается его разрушение. Таким образом, современная схема свертывания крови значительно сложнее Шмидтовой.

Современная схема свертывания крови включает в себя 5 фаз, последовательно сменяющих друг друга. Фазы эти следующие:

  1. Образование протромбиназы.

  2. Образование тромбина.

  3. Образование фибрина.

  4. Полимеризация фибрина и организация сгустка.

  5. Фибринолиз.

За последние 50 лет было открыто множество веществ, принимающих участие в свертывании крови, белков, отсутствие которых в организме приводит к гемофилии (не свертываемости крови). Рассмотрев все эти вещества, международная конференция гемокоагулологов постановила обозначить все плазменные факторы свертывания римскими цифрами, клеточные — арабскими. Это было сделано для того, чтобы исключить путаницу в названиях. И теперь в любой стране после общепринятого в ней названия фактора (они могут быть разными) обязательно указывается номер этого фактора по международной номенклатуре. Для того, чтобы мы могли дальше рассматривать схему свертывания, давайте сначала дадим краткую характеристику этих факторов.

А. Плазменные факторы свертывания.

I. Фибрин и фибриноген. Фибрин — конечный продукт реакции свертывания крови. Свертывание фибриногена, являющееся его биологической особенностью, происходит не только под влиянием специфического фермента — тромбина, но может быть вызвано ядами некоторых змей, папаином и другими химическими веществами. В плазме содержится 2-4 г/л. Место образования — ретикулоэндотелиальная система, печень, костный мозг.

II. Тромбин и протромбин. В циркулирующей крови в норме обнаруживаются лишь следы тромбина. Молекулярный вес его составляет половину молекулярного веса протромбина и равен 30 тыс. Неактивный предшественник тромбина — протромбин — всегда присутствует в циркулирующей крови. Это гликопротеид, в составе которого насчитывают 18 аминокислот. Некоторые исследователи полагают, что протромбин — это комплексное соединение тромбина и гепарина. В цельной крови содержится 15-20 мг% протромбина. Этого содержания в избытке хватает для того, чтобы перевести весь фибриноген крови в фибрин.

Уровень протромбина в крови представляет собой относительно постоянную величину. Из моментов, вызывающих колебания этого уровня, следует указать на менструации (повышают), ацидоз (снижает). Прием 40% алкоголя увеличивает содержание протромбина на 65-175% cпустя 0,5-1 час, что объясняет наклонность к тромбозам у лиц, систематически употребляющих алкоголь.

В организме протромбин постоянно используется и одновременно синтезируется. Важную роль в его образовании в печени играет антигеморрагический витамин К. Он стимулирует деятельность печеночных клеток, синтезирующих протромбин.

III. Тромбопластин. В крови этого фактора в активном виде нет. Он образуется при повреждении клеток крови и тканей и может быть соответственно кровяной, тканевой, эритроцитарный, тромбоцитарный. По своей структуре это фосфолипид, аналогичный фосфолипидам клеточных мембран. По тромбопластической активности ткани различных органов по убывающей располагаются в таком порядке: легкие, мышцы, сердце, почки, селезенка, мозг, печень. Источниками тромбопластина являются также женское молоко и околоплодная жидкость. Тромбопластин участвует как обязательный компонент в первой фазе свертывания крови.

IV. Кальций ионизированный, Са++. Роль кальция в процессе свертывания крови была известна еще Шмидту. Именно тогда в качестве консерванта крови им был предложен цитрат натрия — раствор, который связывал ионы Са++ в крови и предотвращал ее свертывание. Кальций необходим не только для превращения протромбина в тромбин, но для других промежуточных этапов гемостаза, во всех фазах свертывания. Содержание ионов кальция в крови 9-12 мг%.

V и VI. Проакцелерин и акцелерин (АС-глобулин). Образуется в печени. Участвует в первой и второй фазах свертывания, при этом количество проакцелерина падает, а акцелерина — увеличивается. По существу V является предшественником VI фактора. Активизируется тромбином и Са++. Является ускорителем (акцелератором) многих ферментативных реакций свертывания.

VII. Проконвертин и конвертин. Этот фактор является белком, входящим в бета глобулиновую фракцию нормальной плазмы или сыворотки. Активирует тканевую протромбиназу. Для синтеза проконвертина в печени необходим витамин К. Сам фермент становится активным при контакте в поврежденными тканями.

VIII. Антигемофилический глобулин А (АГГ-А). Участвует в образовании кровяной протромбиназы. Способен обеспечивать свертывание крови, не имевшей контакта с тканями. Отсутствие этого белка в крови является причиной развития генетически обусловленной гемофилии. Получен сейчас в сухом виде и применяется в клинике для ее лечения.

IX. Антигемофилический глобулин В (АГГ-В, Кристмас-фактор, плазменный компонент тромбопластина). Участвует в процессе свертывания как катализатор, а также входит в состав тромбопластического комплекса крови. Способствует активации Х фактора.

X. Фактор Коллера, Стьюард-Прауэр-фактор. Биологическая роль сводится к участию в процессах образования протромбиназы, так как он является ее основным компонентом. При свертывании утилизируется. Назван (как и все другие факторы) по именам больных, у которых была впервые обнаружена форма гемофилии, связанная с отсутствием указанного фактора в их крови.

XI. Фактор Розенталя, плазменный предшественник тромбопластина (ППТ). Участвует в качестве ускорителя в процессе образования активной протромбиназы. Относится к бета глобулинам крови. Вступает в реакцию на первых этапах 1 фазы. Образуется в печени с участием витамина К.

XII. Фактор контакта, Хагеман-фактор. Играет роль пускового механизма в свертывании крови. Контакт этого глобулина с чужеродной поверхностью (шероховатость стенки сосуда, поврежденные клетки т.п.) приводит к активации фактора и инициирует всю цепь процессов свертывания. Сам фактор адсорбируется на поврежденной поверхности и в кровоток не поступает, тем самым предупреждается генерализация процесса свертывания. Под влиянием адреналина (при стрессе) частично способен активизироваться прямо в кровотоке.

XIII. Фибринстабилизатор Лаки-Лоранда. Необходим для образования окончательно нерастворимого фибрина. Это — транспептидаза, которая сшивает отдельные нити фибрина пептидными связями, способствуя его полимеризации. Активируется тромбином и Са++. Кроме плазмы есть в форменных элементах и тканях.

Описанные 13 факторов являются общепризнанными основными компонентами, необходимыми для нормального процесса свертывания крови. Вызываемые их отсутствием различные формы кровоточивости относятся к разным видам гемофилий.

В. Клеточные факторы свертывания.

Наряду с плазменными факторами первостепенную роль в свертывании крови играют и клеточные, выделяющиеся из клеток крови. Больше всего их содержится в тромбоцитах, но есть они и в других клетках. Просто при гемокоагуляции тромбоциты разрушаются в большем количестве, чем, скажем, эритроциты или лейкоциты, поэтому наибольшее значение в свертывании имеют именно тромбоцитарные факторы. К ним относятся:

1ф. АС-глобулин тромбоцитов. Подобен V-VI факторам крови, выполняет те же функции, ускоряя образование протромбиназы.

2ф. Тромбин-акцелератор. Ускоряет действие тромбина.

3ф. Тромбопластический или фосполипидный фактор. Находится в гранулах в неактивном состоянии, и может использоваться только после разрушения тромбоцитов. Активируется при контакте с кровью, необходим для образования протромбиназы.

4ф.Антигепариновый фактор. Связывает гепарин и задерживает его антикоагулирующий эффект.

5ф. Тромбоцитарный фибриноген. Необходим для агрегации кровяных пластинок, вязкого их метаморфоза и консолидации тромбоцитарной пробки. Находится и внутри и снаружи тромбоцита. способствует их склеиванию.

6ф. Ретрактозим. Обеспечивает уплотнение тромба. В его составе определяют несколько субстанций, например тромбостенин +АТФ +глюкоза.

7ф. Антифибинозилин. Тормозит фибринолиз.

8ф. Серотонин. Вазоконстриктор. Экзогенный фактор, 90% синтезируется в слизистой ЖКТ, остальные 10% — в тромбоцитах и ЦНС. Выделяется из клеток при их разрушении, способствует спазму мелких сосудов, те самым способствуя предотвращению кровотечения.

Всего в тромбоцитах находят до 14 факторов, таких еще, как антитромбопластин, фибриназа, активатор плазминогена, стабилизатор АС-глобулина, фактор агрегации тромбоцитов и др.

В других клетках крови в основном находятся эти же факторы, но заметной роли в гемокоагуляции в норме они не играют.

С. Тканевые факторы свертывания

Участвуют во всех фазах. Сюда относятся активные тромбопластические факторы, подобные III, VII,IX,XII,XIII факторам плазмы. В тканях есть активаторы V и VI факторов. Много гепарина, особенно в легких, предстательной железе, почках. Есть и антигепариновые вещества. При воспалительных и раковых заболеваниях активность их повышается. В тканях много активаторов (кинины) и ингибиторов фибринолиза. Особенно важны вещества, содержащиеся в сосудистой стенке. Все эти соединения постоянно поступают из стенок сосудов в кровь и осуществляют регуляцию свертывания. Ткани обеспечивают также и выведение продуктов свертывания из сосудов.

Современная схема гемостаза.

Попытаемся теперь объединить в одну общую систему все факторы свертывания и разберем современную схему гемостаза .

Цепная реакция свертывания крови начинается с момента соприкосновения крови с шероховатой поверхностью раненного сосуда или тканью. Это вызывает активацию тромбопластических факторов плазмы и затем происходит поэтапное образование двух отчетливо различающихся по своим свойствам протромбиназ — кровяной и тканевой..

Однако прежде, чем закончится цепная реакция образования протромбиназы, в месте повреждения сосуда происходят процессы, связанные с участием тромбоцитов (т.н. сосудисто-тромбоцитарный гемостаз). Тромбоциты за счет своей способности к адгезии налипают на поврежденный участок сосуда, налипают друг на друга, склеиваясь тромбоцитарным фибриногеном. Все это приводит к образованию т.н. пластинчатого тромба («тромбоцитарный гемостатический гвоздь Гайема»). Адгезия тромбоцитов происходит за счет АДФ, выделяющейся из эндотелия и эритроцитов. Этот процесс активируется коллагеном стенки, серотонином, XIII фактором и продуктами контактной активации. Сначала (в течение 1-2 минут) кровь еще проходит через эту рыхлую пробку, но затем происходит т.н. вискозное перерождение тромба, он уплотняется и кровотечение останавливается. Понятно что такой конец событий возможен только при ранении мелких сосудов, там, где артериальное давление не в состоянии выдавить этот «гвоздь».

1 фаза свертывания. В ходе первой фазы свертывания, фазе образования протромбиназы, различают два процесса, которые протекают с разной скоростью и имеют различное значение. Это — процесс образования кровяной протромбиназы, и процесс образования тканевой протромбиназы. Длительность 1 фазы составляет 3-4 минуты. однако, на образование тканевой протромбиназы тратится всего 3-6 секунд. Количество образующейся тканевой протромбиназы очень мало, ее недостаточно для перевода протромбина в тромбин, однако тканевая протромбиназа выполняет роль активатора целого ряда факторов, необходимых для быстрого образования кровяной протромбиназы. В частности, тканевая протромбиназа приводит к образованию малого количества тромбина, который переводит в активное состояние V и VIII факторы внутреннего звена коагуляции. Каскад реакций, заканчивающихся образованием тканевой протромбиназы (внешний механизм гемокоагуляции), выглядит следующим образом:

1. Контакт разрушенных тканей с кровью и активация III фактора — тромбопластина.

2. III фактор переводит VII в VIIa (проконвертин в конвертин).

3.Образуется комплекс (Ca++ + III + VIIIa)

4. Этот комплекс активирует небольшое количество Х фактора — Х переходит в Ха.

5. (Хa + III + Va + Ca) образуют комплекс, который и обладает всеми свойствами тканевой протромбиназы. Наличие Va (VI) связано с тем, что в крови всегда есть следы тромбина, который активирует V фактор.

6. Образовавшееся небольшое количество тканевой протромбиназы переводит небольшое количество протромбина в тромбин.

7. Тромбин активирует достаточное количество V и VIII факторов, необходимых для образования кровяной протромбиназы.

В случае выключения этого каскада (например, если со всею предосторожностью с использованием парафинированных игл, взять кровь из вены, предотвратив ее контакт с тканями и с шероховатой поверхностью, и поместить ее в парафинированную пробирку), кровь свертывается очень медленно, в течение 20-25 минут и дольше.

Ну, а в норме одновременно с уже описанным процессом запускается и другой каскад реакций, связанных с действием плазменных факторов, и заканчивающийся образованием кровяной протромбиназы в количестве, достаточном для перевода большого количества протромбина с тромбин. Реакции эти следующие ( внутренний механизм гемокоагуляции):

1. Контакт с шероховатой или чужеродной поверхностью приводит к активации XII фактора : XII — XIIa. Одновременно начинает образовываться гемостатический гвоздь Гайема (сосудисто-тромбоцитарный гемостаз).

2.Активный ХII фактор превращает XI в активное состояние и образуется новый комплекс XIIa +Ca++ +XIa + III(ф3)

3. Под влиянием указанного комплекса IX фактор активизируется и образуется комплекс IXa + Va + Cа++ +III(ф3).

4. Под влиянием этого комплекса происходит активация значительного количества Х фактора, после чего в большом количестве образуется последний комплекс факторов: Xa + Va + Ca++ + III(ф3), который и носит название кровяная протромбиназа.

На весь этот процесс затрачивается в норме около 4-5 минут, после чего свертывание переходит в следующую фазу.

2 фаза свертыванияфаза образования тромбина заключается в том, что под влиянием фермента протромбиназы II фактор (протромбин) переходит в активное состояние (IIa). Это протеолитический процесс, молекула протромбина расщепляется на две половинки. Образовавшийся тромбин идет на реализацию следующей фазы, а также используется в крови для активации все большего количества акцелерина (V и VI факторов). Это пример системы с положительной обратной связью. Фаза образования тромбина продолжается несколько секунд.

3 фаза свертывания — фаза образования фибрина — тоже ферментативный процесс, в результате которого от фибриногена благодаря воздействию протеолитического фермента тромбина отщепляется кусок в несколько аминокислот, а остаток носит название фибрин-мономер, который по своим свойствам резко отличается от фибриногена. В частности, он способен к полимеризации. Это соединение обозначается как Im.

4 фаза свертывания — полимеризация фибрина и организация сгустка. Она тоже имеет несколько стадий. Вначале за несколько секунд под влиянием рН крови, температуры, ионного состава плазмы происходит образование длинных нитей фибрин-полимера Is который, однако, еще не очень стабилен, так как способен растворяться в растворах мочевины. Поэтому на следующей стадии под действием фибрин-стабилизатора Лаки-Лоранда (XIII фактора) происходит окончательная стабилизация фибрина и превращение его в фибрин Ij. Он выпадает из раствора в виде длинных нитей, которые образуют сетку в крови, в ячейках которой застревают клетки. Кровь из жидкого состояния переходит в желеобразное (свертывается). Следующей стадией этой фазы является длящаяся достаточно долго (несколько минут) ретракия (уплотнение) сгустка, которая происходит за счет сокращения нитей фибрина под действием ретрактозима (тромбостенина). В результате сгусток становится плотным, из него выжимается сыворотка, а сам сгусток превращается в плотную пробку, перекрывающую сосуд — тромб.

5 фаза свертывания — фибринолиз. Хотя она фактически не связана с образованием тромба, ее считают последней фазой гемокоагуляции, так как в ходе этой фазы происходит ограничение тромба только той зоной, где он действительно необходим. Если тромб полностью закрыл просвет сосуда, то в ходе этой фазы этот просвет восстанавливается (происходит реканализация тромба). Практически фибринолиз всегда идет параллельно с образованием фибрина, предотвращая генерализацию свертывания и ограничивая процесс. Растворение фибрина обеспечивается протеолитическим ферментом плазмином (фибринолизином) который содержится в плазме в неактивном состоянии в виде плазминогена (профибринолизина). Переход плазминогена в активное состояние осуществляется специальным активатором, который в свою очередь образуется из неактивных предшественников (проактиваторов), высвобождающихся из тканей, стенок сосудов, клеток крови, особенно тромбоцитов. В процессах перевода проактиваторов и активаторов плазминогена в активное состояние большую роль играют кислые и щелочные фосфатазы крови, трипсин клеток, тканевые лизокиназы, кинины, реакция среды, XII фактор. Плазмин расщепляет фибрин на отдельные полипептиды, которые затем утилизируются организмом.

В норме кровь человека начинает свертываться уже через 3-4 минуты после вытекания из организма. Через 5-6 минут она полностью превращается в желеобразный сгусток. Способы определения времени кровотечения, скорости свертывания крови и протромбинового времени вы узнаете на практических занятиях. Все они имеют важное клиническое значение.

Ингибиторы свертывания (антикоагулянты). Постоянство крови как жидкой среды в физиологических условиях поддерживается совокупностью ингибиторов, или физиологических антикоагулянтов, блокирующих или нейтрализующих действие коагулянтов (факторов свертывания). Антикоагулянты являются нормальными компонентами системы функциональной системы гемокоагуляции.

В настоящее время доказано, что существует ряд ингибиторов по отношению к каждому фактору свертывания крови, и, однако, наиболее изученным и имеющим практическое значение является гепарин. Гепарин — это мощный тормоз превращения протромбина в тромбин. Кроме того, он влияет на образование тромбопластина и фибрина.

Гепарина много в печени, мышцах и легких, чем и объясняется не свертываемость крови в малом круге кровотечения и связанная с этим опасность легочных кровотечений. Кроме гепарина обнаружено еще несколько естественных антикоагулянтов с антитромбиновым действием, их принято обозначать порядковыми римскими цифрами:

I. Фибрин (поскольку он в процессе свертывания поглощает тромбин).

  1. Гепарин.

  2. Естественные антитромбины (фосфолипопротеиды).

  3. Антипротромбин (препятствующий превращению протромбина в тромбин).

  4. Антитромбин крови больных ревматизмом.

  5. Антитромбин, возникающий при фибринолизе.

Кроме этих физиологических антикоагулянтов многие химические вещества различного происхождения обладают антикоагулянтной активностью — дикумарин, гирудин (из слюны пиявок) и др. Эти препараты применятся в клинике при лечении тромбозов.

Препятствует свертыванию крови и фибринолитическая система крови. По современным представлениям она состоит из профибринолизина (плазминогена), проактиватора и системы плазменных и тканевых активаторов плазминогена. Под влиянием активаторов плазминоген переходит в плазмин, который растворяет сгусток фибрина.

В естественных условиях фибринолитическая активность крови находится в зависимости от депо плазминогена, плазменного активатора, от условий, обеспечивающих процессы активации, и от поступления этих веществ в кровь. Спонтанная активность плазминогена в здоровом организме наблюдается при состоянии возбуждения, после инъекции адреналина, при физических напряжениях и при состояниях, связанных с шоком. Среди искусственных блокаторов фибринолитической активности крови особое место занимает гамма аминокапроновая кислота (ГАМК). В норме в плазме содержится количество ингибиторов плазмина, превышающее в 10 раз уровень запасов плазминогена в крови.

Состояние процессов гемокоагуляции и относительное постоянство или динамическое равновесие факторов свертывания и антисвертывания связано с функциональным состоянием органов системы гемокоагуляции (костного мозга, печени, селезенки, легких, сосудистой стенки). Деятельность последних, а следовательно, и состояние процесса гемокоагуляции, регулируется нервно-гуморальными механизмами. В кровеносных сосудах имеются специальные рецепторы, воспринимающих концентрацию тромбина и плазмина. Эти два вещества и программируют деятельность указанных систем.

Регуляция процессов гемокоагуляции и антигоагуляции.

Рефлекторные влияния. Важное место среди многих раздражителей, падающих на организм, занимает болевое раздражение. Боль приводит к изменению деятельности почти всех органов и систем, в том числе и системы свертывания. Кратковременное или длительное болевое раздражение ведет к ускорению свертывания крови, сопровождаемое тромбоцитозом. Присоединение к боли чувства страха приводит к еще более резкому ускорению свертывания. Болевое раздражение, нанесенное анестезированному участку кожи, не вызывает ускорения свертывания. Такой эффект наблюдается с первого дня рождения.

Большое значение имеет продолжительность болевого раздражения. При кратковременной боли сдвиги менее выражены и возврат к норме совершается в 2-3 раза быстрей, чем при длительном раздражении. Это дает основание полагать, что в первом случае принимает участие лишь рефлекторный механизм, а при длительном болевом раздражении включается и гуморальное звено, обусловливая продолжительность наступающих изменений. Большинство ученых полагает, что таким гуморальным звеном при болевом раздражении является адреналин.

Значительное ускорение свертывания крови происходит рефлекторно также при действии на организм тепла и холода. После прекращения теплового раздражения период восстановления до исходного уровня в 6-8 раз короче, чем после холодового.

Свертывание крови является компонентом ориентировочной реакции. Изменение внешней среды, неожиданное появление нового раздражителя вызывают ориентировочную реакцию и одновременно ускорение свертывания крови, что является биологически целесообразной защитной реакцией.

Влияние вегетативной нервной системы. При раздражении симпатических нервов или после инъекции адреналина свертывание ускоряется. Раздражение парасимпатического отдела НС приводит к замедлению свертывания. Показано, что вегетативная нервная система оказывает влияние на биосинтез прокоагулянтов и антикоагулянтов в печени. Имеются все основания полагать, что влияние симпатико-адреналовой системы распространяется преимущественно на факторы свертывания крови, а парасимпатической — преимущественно на факторы, препятствующие свертыванию крови. В период остановки кровотечения оба отдела ВНС выступают синергично. Их взаимодействие в первую очередь направлено на остановку кровотечения, что жизненно важно. В дальнейшем, после надежной остановки кровотечения, усиливается тонус парасимпатической НС, что приводит к повышению антикоагулятной активности, столь важной для профилактики внутрисосудистых тромбозов.

Эндокринная система и свертывание. Эндокринные железы являются важным активным звеном механизма регуляции свертывания крови. Под влиянием гормонов процессы свертывания крови претерпевают ряд изменений, а гемокоагуляция либо ускоряется, либо замедляется. Если сгруппировать гормоны по их действию на свертывание крови, то к ускоряющим свертывание будут относиться АКТГ, СТГ, адреналин, кортизон, тестостерон, прогестерон, экстракты задней доли гипофиза, эпифиза и зобной железы; замедляют свертывание тиреотропный гормон, тироксин и эстрогены.

Свертывание крови — Мегаэнциклопедия Кирилла и Мефодия — статья

Све́ртывание кро́ви, превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме крови белка фибриногена в нерастворимый фибрин при истечении крови из поврежденного сосуда. Сгусток препятствует дальнейшей потере крови и проникновению в организм болезнетворных микроорганизмов, что имеет большое значение для выживания животного или человека. Не менее важно, что процесс свертывания крови не затрагивает неповрежденные сосуды.

Процесс свертывания крови находится под контролем нервной и гуморальной системы, и непосредственно зависит от согласованного взаимодействия по меньшей мере 12 специальных факторов (белков крови).

Уже через доли секунды после повреждения стенки сосуда в зоне травмы наблюдается спазм сосудов, и развивается цепь тромбоцитарных реакций, в результате которых образуется тромбоцитарная пробка. Прежде всего, происходит активация тромбоцитов факторами, выделяющимися из поврежденных тканей сосуда, а также малыми количествами тромбина — фермента, образующегося в ответ на повреждение. Затем происходит склеивание (агрегация) тромбоцитов друг с другом и с фибриногеном, содержащимся в плазме крови, и одновременное прилипание (адгезия) тромбоцитов к коллагеновым волокнам, находящимся в стенке сосуда, и поверхностным адгезивным белкам клеток эндотелия. В процесс вовлекается все большее и большее число тромбоцитов, поступающих в зону повреждения. Первая стадия адгезии и агрегации обратима, но позже эти процессы становятся необратимыми. Агрегаты тромбоцитов уплотняются, образуя пробку, плотно закрывающую дефект в сосудах малого и среднего размера. Из адгезированных тромбоцитов высвобождаются факторы, активирующие все клетки крови и некоторые факторы свертывания, находящиеся в крови, в результате чего на основе тромбоцитарной пробки формируется фибриновый сгусток. В сети фибрина задерживаются форменные элементы крови и в результате образуется кровяной сгусток. Позднее из сгустка вытесняется жидкость, и он превращается в тромб, который препятствует дальнейшей потере крови, он же является барьером для проникновения патогенных агентов. Такая тромбоцитарно-фибриновая гемостатическая пробка может противостоять повышенному кровяному давлению после восстановления тока крови в поврежденных сосудах среднего размера. Механизм прилипания тромбоцитов к эндотелию сосудов в зонах с малой и большой скоростью тока крови различается набором так называемых адгезивных рецепторов — белков, расположенных на клетках кровеносных сосудов. Генетически обусловленное отсутствие или снижение числа таких рецепторов (например, довольно часто встречающаяся болезнь Виллебранда) приводит к развитию геморрагического диатеза (кровоточивости).

В процессе свертывания крови принимают участие особые плазменные белки — так называемые факторы свертывания крови, обозначаемые римскими цифрами. Эти факторы в норме циркулируют в крови в неактивной форме. Повреждение сосудистой стенки запускает каскадную цепь реакций, в которых факторы свертывания переходят в активную форму. Так, сперва освобождается активатор протромбина, затем под его влиянием протромбин превращается в тромбин. Тромбин, в свою очередь, расщепляет крупную молекулу растворимого глобулярного белка фибриногена на более мелкие фрагменты, которые затем вновь соединяются в длинные нити фибрина — нерастворимого фибриллярного белка. Установлено, что при свертывании 1 мл крови образуется тромбин в количестве, достаточном для коагуляции всего фибриногена в 3 литрах крови, однако в нормальных физиологических условиях тромбин генерируется только в месте повреждения сосудистой стенки.

В зависимости от пусковых механизмов различают внешний и внутренний пути свертывания крови. Как при внешнем, так и при внутреннем пути активация факторов свертывания крови происходит на мембранах поврежденных клеток, но в первом случае запускающий сигнал, так называемый тканевой фактор — тромбопластин — поступает в кровь из поврежденных тканей сосуда. Поскольку он поступает в кровь извне, данный путь свертывания крови называют внешним путем. Во втором случае сигнал поступает от активированных тромбоцитов, а, поскольку они являются составными элементами крови, этот путь свертывания называют внутренним. Такое разделение достаточно условно, поскольку в организме оба процесса тесно взаимосвязаны. Однако подобное разделение значительно упрощает интерпретацию тестов, используемых для оценки состояния системы свертывания крови.

Цепь превращений неактивных факторов свертывания крови в активные происходит при обязательном участии ионов кальция, в частности, превращение протромбина в тромбин. Кроме кальция и тканевого фактора, в процессе участвуют факторы свертывания YII и X (ферменты плазмы крови).

Отсутствие или снижение концентрации любого из необходимых факторов свертывания крови может вызвать продолжительную и обильную кровопотерю. Нарушения в системе свертывания крови могут быть как наследственными (гемофилия, тромбоцитопатии), так и приобретенными (тромбоцитопения). У людей после 50-60 лет содержание фибриногена в крови увеличивается, возрастает число активированных тромбоцитов, происходит ряд других изменений, ведущих к повышению свертываемости крови и опасности возникновения тромбоза.
  • Ксенофонтова В. В., Евстафьев В. В., Машанов О. Г. Анатомия и физиология человека. М., 1997. Т. 4.
  • Гемостаз / Под ред. Н. Н. Петрищева. СПб, 1999.
  • Лычев В. Г. Диагностика и лечение диссеминированного внутрисосудистого свертывания крови. — М.: Мед. кн. Н. Новгород: Изд-во НГМА, 2001.
  • Зубаиров Д. М. Молекулярные основы свертывания крови и тромбообразования. — Казань: ФЭН, 2000.
  • Биохимические компоненты свертывания крови. — Свердловск: Изд-во Урал. ун-та, 1990.
  • Коркушко О. В. Система свертывания крови при старении. — Киев: Здоровья, 1988.

Биология для студентов — 15. Механизм свертывания крови, значение

Кровотечение может возникнуть не только в результате механических повреждений, но и в результате болезней сосудов, изменения тромбоцитов или нарушения механизма свертывания крови. Тяжелые кровотечения могут иметь место при остром лейкозе, гемофилии, тромбоцитопении, токсическом поражении капилляров.

Фактор свертывания крови имеет большое значение при остановке кровотечения. Поэтому исследованием свертывания крови можно определить причину кровотечения, вызванную нарушением механизма свертывания. Механизм свертывания крови. Свертывание крови — один из самых сложных процессов организма. Суть свертывания крови заключается в том, что находящийся в плазме белок, фибриноген, превращается в волокнистый фибрин. Возникновение фибрина является результатом многочисленных химических реакций. В этих реакциях участвует целый ряд различных веществ. Свертывание крови индуцирует образование активной тромбокиназы. Тромбокиназа присутствует в тромбоцитах и в плазме в своей неактивной форме, т. н. протромбокиназы. Для образования тромбокиназы необходимо присутствие антигемофиличёского глобулина, или фактора VIII (фактор плазмы, связанный с глобулином), IX фактора, а также X фактора и образующегося из тромбоцитов липоидного компонента. Образование активной тромбокиназы является фазой, предшествующей свертыванию крови.

Под влиянием активной тромбокиназы в присутствии ионов кальция и факторов, ускоряющих свертывание крови (проакцелерина — V фактора, акцелерина —VI фактора и конвертина — VII фактора), протромбин превращается в активный тромбин. Это первая фаза свертывания крови (Моравиц).

Образующийся на месте кровотечения активный тромбин превращает растворенный в плазме крови фибриноген в фибрин. Это вторая фаза свертывания крови. Эти изученные в последнее время факторы активируют образование тромбина, превращая все новые и новые количества находящейся в плазме киназы в активную плазмокиназу. Активная плазмокиназа, в свою очередь, увеличивает количество тромбина, образующегося из протромбина. Процесс, таким образом, самостимулирующийся (автокаталитический), в ходе его тромбин образуется быстро и в соответствующем количестве. Превращение протромбина плазмы в тромбин индуцируется тромбокиназой и тканевой киназой. Дальнейшее его образование обеспечивается за счет автокаталитического процесса активной плазмокиназой. Под влиянием активного тромбина и фибриногена возникает фибрин волокнистой структуры, кровь свертывается, образуя кровянистый сгусток.

Кровотечение в полости рта может возникнуть не только в результате механических повреждений, но и в результате болезней сосудов, изменения тромбоцитов или нарушения механизма свертывания крови. Болезни кроветворения, патологические изменения сосудов и нарушения свертывания крови часто проявляются прежде всего именно в полости рта. Тяжелые кровотечения могут иметь место при остром лейкозе, панмиелофтизе, гемофилии, тромбоцитопении, токсическом поражении капилляров. В таких случаях выяснять причину кровотечения часто приходится зубному врачу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *