Что такое рнк вируса – вирусология шпоры / РНК-содержащие вирусы, особенности строение генома и основные представители семейств

Содержание

Что такое рнк вируса — Здоровье и печень

Сотни поставщиков везут лекарства от гепатита С из Индии в Россию, но только M-PHARMA поможет вам купить софосбувир и даклатасвир и при этом профессиональные консультанты будут отвечать на любые ваши вопросы на протяжении всей терапии.

Общая характеристика вирусов.

Вирусы — уникальные агенты на нашей планете. Основные свойства вирусов, по которым они отличаются от всех остальных живых существ следующие:

1. Ультрамикроскопические размеры

2. Вирусы содержат нуклеиновую кислоту только одного вида — или ДНК, или РНК. Все другие организмы содержат нуклеиновые кислоты обоих типов, а геном у них представлен только ДНК.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя из собственной геномной нуклеиновой кислоты. Все прочие организмы способны к увеличению своей биомассы (росту) и размножаются путем бинарного деления клеток.

5. У вирусов отсутствуют собственные системы мобилизации энергии.

6. У вирусов нет собственных белоксинтезирующих систем.

7. В связи с отсутствием собственных систем синтеза белка и мобилизации энергии вирусы являются абсолютными внутриклеточными паразитами. Средой обитания вирусов являются бактерии, клетки растений, животных и человека.

С учетом перечисленных особенностей можно дать следующее определение:

Вирусы — особое царство ультрамикроскопических размеров организмов, обладающих только одним типом нуклеиновых кислот, лишенных собственных систем синтеза белка и мобилизации энергии и являющихся поэтому абсолютными внутриклеточными паразитами.

Молекулярно-генетическая организация вирусов.

Основой таксономии вирусов является вирион, который представляет собой конечную фазу развития вируса. Размеры вирионов различных вирусов варьируют в широких пределах: от 15 -18 до 300-400 нм. Они имеют разнообразную форму — палочковидную, нитевидную, сферическую. Вирион состоит из из геномной нуклеиновой кислоты, окруженной одной или двумя оболочками.

Оболочка, в которую упакована геномная нуклеиновая кислота, называется капсидом (от греческого сapsa — ящик). Наиболее просто организованные вирусы представляют собой нуклеокапсиды: они состоят только из нуклеиновой кислоты и белковой оболочки, построенной из идентичных пептидных молекул. Капсид имеет строго упорядоченную структуру, в основе которой лежат принципы спиральной или кубической симметрии.

Капсиды палочковидных или нитевидных вирионов состоят из структурных субъединиц, уложенных в виде спирали вокруг оси. При таком расположении субъединиц образуется полый канал, внутри которого компактно уложена молекула вирусной нуклеиновой кислоты. Ее длина может во много раз превышать длину палочковидного вириона. Например, длина вируса табачной мозаики 300 нм, а его РНК достигает величины 4000 нм. При этом РНК настолько связана с капсидом, что ее нельзя при этом освободить, не повредив последний. Подобные капсиды встречаются у некоторых бактериальных вирусов и у вирусов человека (вирус гриппа).

Сферическая структура вирионов определяется капсидом, построенном по принципам кубической симметрии в основе которой лежит фигура икосаэдра -двадцатигранника .

Капсид состоит из асимметричных субъединиц (полипептидных молекул), которые объединены в морфологические субъединицы — капсомеры.Один капсомер содержит 2,3,5 субъединиц, расположенных по осям симметрии икосаэдра.

Число капсомеров для вируса данного вида является постоянным, оно имеет диагностическое значение. Например, вирион аденовирусов имеет 252 капсомера, у паповавирусов — 72. Молекулярная организация всех простых вирусов сводится к использованию спиральной и кубической симметрии.

Более сложно устроены вирусы, у которых имеется вторая оболочка. Она называется —

суперкапсид. Суперкапсид представляет собой обычную биологическую мембрану, состоящую из двух слоев липидов, имеющих клеточное происхождение и заключенных в них гликозилированных суперкапсидных вирусных белков, которые выступают над наружной поверхностью вириона в виде своеобразных шипов. Суперкапсидные вирусные белки, образующие шипы, обладают жизненно важными для вируса функциями:

они распознают клеточные рецепторы и связываются с ними, обеспечивают слияние вирусной мембраны с мембраной клетки и ее лизисом, способствуют распространению вируса в организме за счет слияния клеток, многие из них обладают свойствами протективных антигенов и т.д. Многие сложные вирусы, такие как ортомиксовирусы, парамиксовирусы, коронавирусы и др. устроены таким образом, что их нуклеокапсид, имеющий палочковидную спиральную структуру, окружен суперкапсидной липопротеидной оболочкой, придающей вириону сферическую форму. У тогавирусов нуклеокапсид имеет форму икосаэдра, который окружен суперкапсидной оболочкой, придающей вириону шаровидную форму. Вирион ретровирусов имеет икосаэдрический капсид внутри которого располагается спиральный нуклеокапсид, а

сам вирион покрыт липидсодержащей оболочкой, придающей ему сферическую форму.

Классификация и таксономия вирусов.

Вирусы составляют царство Vira , которое подразделяется на два подцарства по типу нуклеиновой кислоты: ДНК-содержащие вирусы (дезоксирибовирусы) и РНК- содержащие вирусы ( рибовирусы).

Подцарства делятся на семейства, которые в свою очередь подразделяются на роды. Название всех вирусных родов оканчивается словом «virus», для названия семейств используется суффикс «idae», а подсемейств «inae». Из более чем 55 семейств вирусов, признанных Международным комитетом по таксономии вирусов, 19 включают вирусы человека и животных.

Для классификации вирусов используют следующие критерии:

1. Нуклеиновая кислота: тип, число нитей, процентное содержание, молекулярная масса, содержание гуанина и цитозина.

2. Морфология: тип симметрии или псевдосимметрии, число капсомеров для вирусов с кубической симметрией, наличие внешней липопротеиновой оболочки, форма. Размеры вирионов.

3. Биофизические свойства.

4. Белки: количество структурных белков, их локализация , аминокислотный состав.

5. Липиды.

6. Размножение в тканевых культурах.

7. Круг поражаемых хозяев, особенности патогенеза инфекционного процесса

8. Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37 и 50 градусах Цельсия, действие жирорастворителей и отдельных катионов).

9. Антигенные свойства.

В состав простых вирионов входит один тип нуклеиновой кислоты — РНК или ДНК и белки. У сложных вирионов в составе внешней оболочки содержатся липиды и полисахариды, которые они получают из клеток хозяина.

Вирусные ДНК. По своей структуре вирусные ДНК характеризуются рядом особенностей, что дает возможность подразделить их на несколько типов:

1. Одноцепочечная линейная ДНК (парвовирусы)

2. Одноцепочечная кольцевая ДНК

3. Двухцепочечная линейная ДНК (вирусы герпеса)

4. Двухцепочечная кольцевая ДНК (паповавирусы, вирус гепатита В)

5. Двухцепочечная ДНК с ковалентно связанным терминальным гидрофобным белком ( аденовирусы)

6. Двухцепочечная ДНК, замкнутая на каждом конце ковалентной связью (вирус оспы).

Вирусные РНК. У РНК-содержащих вирусов генетическая информация закодирована в РНК таким же кодом. Как в ДНК всех других вирусов и клеточных организмов. Вирусные РНК по своему химическому составу не отличаются от РНК клеточного происхождения, на характеризуются разной структурой:

1. Одноцепочечная нефрагментированная РНК, обладающая матричной активностью (позитивная или +РНК) Вирус полиомиелита и др. пикорнавирусы.

2. Одноцепочечная нефрагментированная РНК, не обладающая матричной активностью (негативная, или — РНК). Вирион имеет в своем составе РНК-зависимую РНК-полимеразу (транскриптазу). Она синтезирует на вирионной РНК матричную РНК, необходимую для трансляции вирусспецифических белков. Парамиксовирусы.

3. Одноцепочечная фрагментированная РНК, не обладающая матричной активностью (негативная РНК), вирион имеет транскриптазу. Ортомиксовирусы (РНК состоит из 8 фрагментов).

4. Двухцепочечная фрагментированная РНК, вирион имеет транскриптазу. Реовирусы.

5. Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном). Вирионы имеют обратную транскриптазу. Ретровирусы.

6. Одноцепочечная кольцевая РНК. Такой геном имеет только один вирус — вирус Дельта — гепатита. Это дефектный вирус, для его размножения необходим вирус — помощник — вирус гепатита В.

Жизненный цикл вирусов. Основные типы вирусных геномов.

Под жизненым циклом вируса понимают процесс его размножения. Он происходит только внутриклеточно. Особенности размножения зависят прежде всего от вирусного генома.

Тип вирусной ДНК определяет особенности ее репликации.

1. Двунитевая ДНК — репликация происходит по обычному механизму репликации: нити разделяются, и на каждой из них достраивается комплиментарная ей нить.

2. Однонитевая ДНК. Ее репликация происходит через образование вначале репликативной формы, а затем промежуточной репликативной формы. Репликативная форма возникает в результате синтеза на исходной вирионной ДНК ( + нити) комплементарной ей (-) нити, то есть однонитевая ДНК превращается в двунитевую структуру ДНК. Промежуточная репликативная форма — это репликативная форма, (-) нить которой служит матрицей для синтеза (+) нити ДНК, идентичной исходной вирионной ДНК. Такой механизм обеспечивает передачу генов дочерним вирионам.

3. У вирусов, геном которых представлен однонитевой РНК, ее репликация происходит по следующей схеме: вначале на вирионной РНК (в РНК) синтезируются комплиментарные ей РНК (к РНК). Этот процесс катализирется специфической РНК — репликазой 1. Затем на к РНК синтезируется комплементарная ей, но идентичная исходной вирионная РНК (в РНК), этот процесс также катализируется специфической репликазой П. Таким образом репликация идет по схеме :

в РНК — — к РНК — в РНК

4. Репликация однонитевой РНК ретровирусов происходит с участием обратной транскриптазы. Вначале на в РНК обратная транскриптаза синтезирует комплементарную ей «минус» цепь ДНК, а затем на ней — «плюс» нить ДНК. Двунитевая ДНК интегрируется в хромосому клетки и там служит матрицей для синтеза разных классов вирусных РНК. Таким образом, репликация ретровирусов происходит по схеме:

РНК — ДНК — РНК

Существуют некоторые общие закономерности размножения вирусов. Во- первых, все РНК-содержащие вирусы, кроме вирусов гриппа и ретровирусов, размножаются в цитоплазме.

Во-вторых, размножение всех ДНК-содержащих вирусов, кроме вирусов оспы, протекает в ядре.

Другая особенность размножения вирусов заключается в том, что их нуклекапсидные белки синтезируются на свободных полирибосомах, (не связанных с мембраной), а суперкапсидные белки — на рибосомах, ассоциированных с мембранами. Кроме того, белки некоторых вирусов подвергаются протеолитическому процессингу и гликозилированию.

Не нашли то, что искали? Воспользуйтесь поиском:



Источник: studopedia.ru

Читайте также

Разница между ДНК и РНК-вирусами

Основное отличие — ДНК против РНК-вирусов

Вирус — это биологический агент, который может самовоспроизводиться внутри клетки-хозяина. Зараженные клетки вирусами могут производить тысячи новых копий исходного вируса с необычайной скоростью. Генетическим материалом вируса может быть либо ДНК, либо РНК. Вирусы, которые содержат ДНК в качестве своего генетического материала, называются ДНК-вирусами. РНК-вирусы, с другой стороны, содержат РНК в качестве своего генетического материала. Генетический материал покрыт белковым капсидом во всех вирусах. Некоторые вирусы содержат конверт, закрывающий капсид. После инфицирования хозяина репликация вирусной ДНК происходит внутри ядра, тогда как репликация вирусной РНК происходит в цитоплазме. главное отличие между ДНК и РНК-вирусами является то, что ДНК-вирусы содержат большие геномы благодаря точной репликации, тогда как РНК-вирусы содержат небольшие геномы из-за подверженной ошибкам репликации.

Ключевые области покрыты

1. Что такое ДНК-вирусы
      — определение, классы, биосинтез
2. Что такое РНК-вирусы
      — определение, классы, биосинтез
3. Каковы сходства между ДНК и РНК-вирусами
      — Краткое описание общих черт
4. В чем разница между ДНК и РНК-вирусами
      — Сравнение основных различий

Ключевые слова: Балтиморская классификация, ДНК-вирусы, двухцепочечная ДНК, оболочка, РНК-вирусы, одноцепочечная ДНК


Что такое ДНК-вирусы

ДНК-вирусы относятся к вирусам, генетическая информация которых хранится в форме ДНК. Большинство ДНК-вирусов представляют собой двухцепочечные вирусы, состоящие из икосаэдрической симметрии в их капсиде. Немногие могут содержать одноцепочечную ДНК в своем геноме. Некоторые ДНК-вирусы также могут содержать оболочку.

Семь классов вирусов могут быть идентифицированы на основе типа генетического материала, присутствующего в каждом вирусе, и метода их репликации. Эта классификация называется классификацией Балтимора, которая показана в Рисунок 1.

Рисунок 1: Балтиморская классификация

Классы ДНК-вирусов

Учебный класс

Тип нуклеиновой кислоты

семья

Биосинтез

Класс I

Двухцепочечная, линейная ДНК

Аденовирусы (без оболочки)

Герпесвирусы (в оболочке)

Poxviridae (в оболочке)

Клеточный фермент транскрибирует вирусную ДНК в ядре у Adenoviridae и Herpesviridae

Вирусный фермент транскрибирует вирусную ДНК в цитоплазме

Класс II

Одноцепочечная, линейная ДНК (смысловая цепь)

Parvoviridae (без оболочки)

Клеточный фермент транскрибирует вирусную ДНК в ядре

Класс VII

Двухцепочечная, кольцевая ДНК

Papovaviridae (без оболочки)

Hepadnaviridae (в оболочке)

Клеточный фермент транскрибирует вирусную ДНК в ядре Papovaviridae

Клеточный фермент транскрибирует вирусную ДНК в ядре; обратная транскриптаза копирует мРНК, чтобы сделать вирусную ДНК в Hepadnaviridae

Что такое РНК-вирусы

РНК-вирусы относятся к вирусам, генетическая информация которых хранится в форме РНК. Большинство РНК-вирусов содержат одноцепочечную РНК, а некоторые содержат двухцепочечную РНК. РНК-вирусы содержат небольшие геномы по сравнению с ДНК-вирусами. Это связано с ошибочной репликацией в РНК-вирусах. Некоторые ДНК и РНК-вирусы показаны на фигура 2.

Рисунок 2: ДНК и РНК Вирусы

Классы РНК-вирусов

Учебный класс

Тип нуклеиновой кислоты

семья

Биосинтез

Класс III

Двухцепочечная РНК

Reoviridae (двойной капсид, без оболочки)

Вирусный фермент копирует нить антисмысловой РНК, превращая мРНК в цитоплазму

Класс IV

Одноцепочечная РНК (смысловая цепь)

Picornaviridae (без оболочки)

Togaviridae (в оболочке)

Вирусная РНК функционирует как матрица для синтеза РНК-полимеразы, которая копирует антисмысловую цепь РНК для образования мРНК в цитоплазме.

Класс V

Одноцепочечная РНК (антисмысловая цепь)

Rhabdoviridae (в оболочке)

Вирусный фермент копирует вирусную РНК, чтобы сделать мРНК в цитоплазме

Класс VI

Одноцепочечная РНК (смысловая цепь) обратной транскриптазы (РНК-зависимая ДНК-полимераза)

Retroviridae (в оболочке)

Вирусный фермент копирует вирусную РНК для образования ДНК в цитоплазме; ДНК движется к ядру

Сходства между ДНК и РНК-вирусами

  • Как ДНК, так и РНК-вирусы могут размножаться только внутри живой клетки-хозяина.
  • Большинство ДНК- и РНК-вирусов могут быть вредными, поскольку они заражают живые клетки.
  • Как ДНК, так и РНК-вирусы содержат капсид.
  • Как ДНК, так и РНК-вирусы могут быть как оболочечными, так и неокрученными.

Разница между ДНК и РНК-вирусами

Определение

ДНК-вирусы: ДНК-вирусы относятся к вирусам, генетическая информация которых хранится в форме ДНК.

РНК Вирусы: РНК-вирусы относятся к вирусам, генетическая информация которых хранится в форме РНК.

геном

ДНК-вирусы: ДНК-вирусы содержат ДНК в качестве своего генетического материала.

Вирусы РНК: РНК-вирусы содержат РНК в качестве своего генетического материала.

Дважды многожил

Рнк-содержащие вирусы:

Семейство Пикорнавирусы (Picornaviridae) состоит из 8 родов:

Энтеровирусы (полиомиелит)

Риновирусы (ОРВИ)

Афтовирусы (ящур)

Гепатовирусы (гепатит А)

Это семейство относится к безоболочечным вирусам, содержащих однонитевую плюс РНК. Диаметр вируса около 30нм, вирион состоит из икосаэдрического капсида, окружающего однонитевую плюс РНК с протеином VPg. Капсид состоит из 12 пятиугольников (пентамеров), каждый из которых в свою очередь состоит из 5 белковых субъединиц-протомеров: VP1, VP2, VP3, VP4.

Семейство Реовирусы (Reoviridae) содержит 4 рода:

Ортовирусы (желудочно-кишечные и респираторные инфекции)

Арбовирусы (арбовирусные инфекции: вирус Кемерово переносится клещами, вирус синего языка овец переносится мокрицами)

Колтивирусы (вирус колорадской клещевой лихорадки)

Ротавирусы (диареи)

Вирион реовирусов имеет сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа, оболочки нет. Геном представлен двунитевой фрагментированной (10-12 сегментов) линейной РНК. Внутренний капсид и геномная РНК составляют сердцевину вириона. Внутренний капсид реовирусов содержит систему транскрипции: белки лямбда -1, лямбда -3, мю -2. От сердцевины отходят шипы, представленные белком лямбда – 2. У ротавирусов внутренний капсид включает белки VP1, VP2, VP3, VP6. Наружный капсид реовирусов состоит из белков сигма – 1, сигма – 3, мю – 1с, а также белков лямбда -2, выступаюших в виде шипов. Белок сигма -1 является гемагглютинином и прикрепительным белком, белок мю -1с обладает способностью заражать клетки кишечника и впоследствии поражать ЦНС.

Семейство Буньявирусы (Bunyaviridae) включает 5 родов:

Буньявирусы (калифорнийский энцефалит, энцефалит Джеймстаун- каньон, энцефалит Ла-Кросс, лихорадки Тягиня, Инко, Гуароа – переносчиком вирусов являются комары, заболеваемость эндемична в 20 штатах США)

Флебовирусы (москитная лихорадка или лихорадка паппатачи). Резервуаром и переносчиком вируса являются самки москитов. Заболевание встречается в Европе (Средиземноморье), Азии (Иран, Пакистан), в Северной Африке, Италии, Португалии. Вспышки имели место в Закавказье, Крыму, Молдавии и Средней Азии.

Нейровирусы (геморрагическая лихорадка Крым-Конго, основным резервуаром вируса в природе являются многие виды пастбищных клещей, заражение происходит через присасывание клещей. В России это заболевание встречается на территории Краснодарского, Ставропольского краев, Астраханской, Волгоградской и Ростовской областей, республик Дагестан, Калмыкия и Карачаево-Черкесии.

Хантавирусы (ГЛПС-геморрагическая лихорадка с почечным синдромом)

Тосповирусы непатогенны для человека и поражают растения

Вирионы имеют овальную или сферическую форму, диаметр 80-120нм. Это сложные РНК-геномные вирусы, содержащие три внутренних нуклеокапсида со спиральным типом симметрии. Каждый нуклеокапсид состоит из нуклеокапсидного белка N, одноцепочечной минус РНК и фермента транскриптазы. Три сегмента РНК, связанные с нуклеокапсидом, обозначают по размерам: L (long) – большой, M (medium) – средний, S (short) – малый. Сердцевина вириона окружена липопротеидной оболочкой, на поверхности которой находятся шипы – гликопротеины G1 и G2, которые кодируются М-сегментом РНК. ш80-

Семейство Тогавирусы (Togaviridae) состоит из 4 родов, 2 из которых играют роль в патологии человека:

Альфавирус (вирусы, передаваемые членистоногими, вызывают у человека заболевания, сопровождающиеся лихорадкой, высыпаниями на коже, развитием энцефалита и артрита, в Приморском крае – вирус лихорадки леса Семлики)

Рубивирус (вирус краснухи)

Их геном состоит из линейной однонитчатой плюс-РНК, окруженной капсидом (С-белок) с кубическим типом симметрии и состоящим из 32 капсомеров. Нуклеокапсид окружен наружной двухслойной липопротеидной оболочкой, на поверхности которой располагаются гликопротеины Е1, Е2, Е3, пронизывающие липидный слой. Диаметр вирионов- от 65 до 70 нм.

Семейство Флавивирусы (Flaviviridae) происходит от латинского flavus – желтый, по названию заболевания желтая лихорадка. Патогенные для человека входят в состав 2 родов:

Флавивирус (желтая лихорадка, вирус клещевого энцефалита, вирус омской геморрагической лихорадки, вирус лихорадки денге, вирус японского энцефалита, вирус лихорадки Западного Нила)

Гепацивирус (вирус гепатита С)

Это сложные РНК геномные вирусы сферической формы, их диаметр 40-60 нм. Геном состоит из линейной однонитчатой плюс-нитевой РНК, окруженной капсидом с кубическим типом симметрии. В состав нуклеокапсида входит один белок – V2. Нуклеокапсид окружен суперкапсидом, на поверхности которого содержится гликопротеин V3. На внутренней стороне суперкапсида расположен структурный белок V1.

Семейство Ортомиксовирусы (Orthomyxoviridae) включает в себя род:

Инфлюэнцавирус (вирус гриппа, который включает 3 серотипа: А, В,С)

Диаметр вирусной частицы 80-120 нм. Вирион имеет сферическую форму, В центре вириона расположен нуклеокапсид, имеющий спиральный тип симметрии. Геном вирусов гриппа представляет собой спираль однонитчатой сегментированной минус-нитевой РНК. Капсид состоит в основном из белка – нуклеопротеина (NР), а также белков полимеразного комплекса (Р). Нуклеокапсид окружен слоем матриксных и мембранных белков (М), которые участвуют в сборке вирусной частицы. Поверх этих структур располагается суперкапсид – наружная липопротеиновая оболочка, которая несет на своей поверхности шипики. Шипики образованы двумя сложными белками-гликопротеинами: гемагглютинином (Н) и нейраминидазой (N).

Семейство Парамиксовирусы (Paramyxoviridae), которое включает 2 подсемейства:

Подсемейство Парамиксовирусы:

Морбилливирус (вирус кори)

Респировирус (вирус парагриппа)

Рубулавирус (вирус паротита, парагриппа)

Подсемейство Пневмовирусы:

Пневмовирус (респираторно-синцитиальный вирус (РС))

Метапневмовирус (РС-вирус)

Вирион парамиксовирусов имеет сферическую форму, диаметр 150-300 нм, окружен оболочкой с гликопротеиновыми шипами. Под оболочкой находится спиральный нуклеокапсид, состоящий из нефрагментированной линейной однонитевой минус-РНК, связанной белками: нуклеопротеином (NР), полимеразой-фосфопротеином (Р) и большим (L) белком. Нуклеокапсид ассоциирован с матриксным (М) белком, расположенным под оболочкой вириона. Оболочка вириона содержит шипы – два гликопротеина: белок слияния (F), прикрепительный белок гемагглютинин-нейраминидаза (HN), гемагглютинин (Н) или (G ) белок.

Семейство Рабдовирусы (Rhabdoviridae) включает около 80 родов, вызывают заболевания животных и растений.

Лассавирус (вирус бешенства)

Везикуловирус (вирус везикулярного стоматита)

Вирионы имеют форму цилиндра с полукруглым и плоским концами (форма пули), размер вирионов 130х300х60х80. Состоят из двухслойной липопротеиновой оболочки и нуклеокапсида спиральной симметрии. Оболочка изнутри выстлана М-белком, а снаружи от нее отхоят шипы гликопротеина G. РНП нуклеокапсида состоит из геномной РНК и белков: N – белок, укрывающий как чехол РНК, L –белок и NS – белок, являющиеся транскриптазой вируса. Геном рабдовирусов представлен однонитевой нефрагментированной линейной минус-РНК.

Семейство Филовирусы (Filoviridae) содержит два рода:

Род марбургподобных вирусов (африканская геморрагическая лихорадка Марбург)

Род эболаподобных вирусов (африканская геморрагическая лихорадка Эбола)

Вирусы имеют вид длинных филаментов (80-1000нм) с оболочкой и однонитевой минус-РНК, заключенной в капсид. Содержит полимеразу. Симметрия капсида спиральная. На оболочке имеются шипы (спикулы).

Семейство Коронавирусы (Coronaviridae), включает в себя 1 род, объединяющий более 10 видов, вызывающих заболевания у человека и животных.

Коронавирус (вызывает поражения респираторных органов, в т.ч. SARS, ЖКТ, нервной системы)

Вирионы округлой формы размером 80-220нм. Сердцевина вириона представлена спиральным нуклеокапсидом, содержащим однонитевую плюс-РНК. Нуклеокапсид окружен липидной оболочкой, покрытой снаружи булавовидными выступами – пепломерами. Пепломеры придают вирусной частице вид солнечной короны. В оболочку вириона встроены гликопротеины Е1 и Е2, которые отвечают за адсорбцию вируса на клетке и проникновение в клетку хозяина.

Семейство Ретровирусы (Retroviridae), которое влючает 7 родов:

Альфаретровирус (вирусы лейкоза, саркомы птиц, саркомы Рауса кур)

Бетаретровирус (вирус рака молочных желез мышей, эндогенный ретровирус человека, вирус обезьян)

Гаммаретровирус (вирусы саркомы и лейкемии мышей, кошек, приматов)

Дельтаретровирус (вирус лейкемии КРС, лимфотропные вирусы Т-клеток человека)

Эпсилоретровирус (вирус саркомы кожи)

Лентивирус (вирус иммунодефицита человека)

Спумавирус (пенящие вирусы человека, обезьян, бычий синцитиальный вирус)

Ретровирусы имеют сферическую форму, размер 80-130нм. Вирион имеет оболочку и нуклеокапсидную сердцевину. Капсид икосаэдрический. Обратная транскриптаза связана с геномом однонитевой плюс- РНК. Вирусы содержат протеины: группового антигена (gag), полимеразный протеин (pol) и белки оболочки (env). Известно около 30 онкоантигенов.

Семейство Аренавирусы (Arenaviridae) включает род:

Аренавирус (вирусы лимфоцитарного хориоменингита, Ласа, Хунин, Мачупо, Гуанарито, вызывающие тяжелые геморрагические лихорадки)

Вирион имеет сферическую или овальную форму, диаметр около 120нм. Снаружи он окружен оболочкой с булавовидными гликопротеиновыми шипами GP1, GP2. Под оболочкой расположены 12-15 клеточных рибосом, капсид спиральный. Геном представлен двумя сегментами (L, S) однонитевой минус-РНК, кодируется 5 белков:L, Z, N, G.

Семейство Калицивирусы (Caliciviridae) содержит вирусы гастроэнтерита группы Норволк и вирус везикулярной экзантемы свиней.

Вирион безоболочечный, имеет икосаэдрический капсид с 32 чашеобразными углублениями (ямками). Форма сферическая, диаметр 27-38нм. На поверхности вириона различают 10 выступов, сформированных краями чашеобразных углублений. Геном – линейная, однонитевая плюс-РНК.

Классификация вирусов по Балтимору — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2019; проверки требует 1 правка.

Классификация вирусов по Балтимору (англ. Baltimore classification) — способ классификации вирусов в группы в зависимости от типа геномной нуклеиновой кислоты (ДНК, РНК, одноцепочечная, двуцепочечная) и способа её репликации. Предложена американским учёным Дэвидом Балтимором в 1971 году[1].

Класс I: вирусы, содержащие двуцепочечную ДНК[править | править код]

Вирусы, содержащие двуцепочечную ДНК для репликации попадают в ядро клетки, так как им требуется клеточная ДНК-полимераза. Также репликация ДНК этих вирусов сильно зависит от стадии клеточного цикла. В некоторых случаях вирус может вызывать деления клетки, что может приводить к раковому перерождению. Примерами таких вирусов являются Herpesvirales, Adenoviridae, Papillomaviridae и Polyomaviridae.

У представителей семейства Poxviridae геномная ДНК реплицируется не в ядре.

Класс II: вирусы, содержащие одноцепочечную ДНК[править | править код]

Вирусы семейств Circoviridae и Parvoviridae реплицируют геномную ДНК в ядре и в ходе репликации образуют интермедиат — двуцепочечную ДНК.

Класс III: вирусы, в которых РНК способна к репликации (редупликации)[править | править код]

Как и большинство РНК-вирусов, представители класса III реплицируют геномную РНК в цитоплазме и используют полимеразы хозяина в меньшей степени, чем ДНК-вирусы. Класс III включает в себя два крупных семейства — Reoviridae и Birnaviridae. Репликация моноцистронная, геном сегментирован, каждый ген кодирует один белок.

Классы IV и V: вирусы, содержащие одноцепочечную РНК[править | править код]

Классы IV и V включают вирусы двух типов, репликация которых не зависит от стадии клеточного цикла. Наряду с вирусами, содержащими двуцепочечную ДНК, эти вирусы наиболее изучены.

Класс IV: вирусы, содержащие одноцепочечную (+)РНК[править | править код]

Непосредственно на (+) геномной РНК вирусов IV класса может идти синтез белка на рибосомах клетки хозяина. Вирусы классифицируют на две группы, в зависимости от особенностей РНК:

  • у вирусов с полицистронной мРНК трансляция приводит к образованию полипротеина, который затем разрезается на зрелые белки. С одной цепи РНК может синтезироваться несколько разных белков, что снижает длину генов.
  • вирусы со сложной трансляцией — синтез белка идет со сдвигом рамки считывания, также используется протеолитический процессинг полипротеинов. Эти механизмы обеспечивают синтез разных белков с одной цепи РНК.

Вирусы данного класса включают в таксоны: Nidovirales, Picornavirales (Picornaviridae), Tymovirales, Astroviridae, Caliciviridae, Flaviviridae, Togaviridae, Virgaviridae и др.

Класс V: вирусы, содержащие одноцепочечную (−)РНК[править | править код]

Геномные РНК вирусов класса V не могут быть транслированы на рибосомах клетки хозяина, предварительно требуется транскрипция вирусными РНК-полимеразами в (+)РНК. Вирусы пятого класса классификации по Балтимору классифицируют на две группы:

  • вирусы, содержащие несегментированный геном, на первом этапе репликации происходит транскрипция (−)РНК вирусной РНК-зависимой РНК-полимеразой в моноцистронную мРНК, и далее синтезируются дополнительные копии (+)РНК, служащие матрицами для синтеза геномных (−)РНК. Репликация геномных РНК таких вирусов осуществляется в цитоплазме.
  • вирусы с сегментированными геномами, репликация геномных РНК которых происходит в клеточном ядре, вирусная РНК-зависимая РНК-полимераза синтезирует моноцистронные мРНК с каждого сегмента генома. Наибольшим отличием данной группы вирусов от другой группы пятого класса состоит в том, что репликация осуществляется в двух местах.

Представители данного класса входят в состав таксонов: Bunyavirales, Mononegavirales, Arenaviridae, Ophioviridae, Orthomyxoviridae и Deltavirus.

Класс VI: вирусы, содержащие одноцепочечную (+)РНК, реплицирующиеся через стадию ДНК[править | править код]

Наиболее хорошо изученным семейством данного класса вирусов, являются ретровирусы. Вирусы класса VI используют фермент обратную транскриптазу для превращения (+)РНК в ДНК. Вместо использования РНК в качестве матрицы для синтеза белков вирусы этого класса используют РНК как матрицу ДНК, которая встраивается в геном хозяина ферментом интегразой. Дальнейшая репликация происходит при помощи полимераз клетки хозяина. Наиболее хорошо изученным представителем данной группы вирусов является ВИЧ.

Класс VII: вирусы, содержащие двуцепочечную ДНК, реплицирующиеся через стадию одноцепочечной РНК[править | править код]

Небольшая группа вирусов, в состав которой входят семейства Caulimoviridae и Hepadnaviridae, в том числе вирус гепатита B. Имеют двуцепочечную геномную ДНК, которая ковалентно замкнута в форме кольца и является матрицей для синтеза мРНК вируса, а также субгеномных РНК. Субгеномная РНК служит матрицей для синтеза ДНК-генома ферментом обратной транскриптазой вируса. В некоторых источниках группу называют параретровирусами.

  • «Virus Taxonomy Portal» (Website.) Viral Bioinformatics Resource Center & Viral Bioinformatics — Canada. Retrieved on 2007-09-27
  • Family Groups — The Baltimore Method
  • The Universal Virus Database of the International Committee on Taxonomy of Viruses
  • The taxonomy portal of the Genbank database
  • ViralZone
  • Идентификация вирусов с помощью VirCapSeq-VERT смотри статью: Briese, T., Kapoor, A., Mishra, N., Jain, K., Kumar, A., Jabado, O. J., & Lipkin, W. I. (2015). Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. MBio, 6(5), e01491-15. DOI:10.1128/mBio.01491-15 PMC 4611031

Ретровирусы — Википедия

Ретрови́русы[2] (лат. Retroviridae, от лат. retro — обратный) — семейство РНК-содержащих вирусов, заражающих преимущественно позвоночных. Наиболее известный и активно изучаемый представитель — вирус иммунодефицита человека.

После инфицирования клетки ретровирусом в цитоплазме начинается синтез вирусного ДНК-генома с использованием вирионной РНК в качестве матрицы. Все ретровирусы используют для репликации своего генома механизм обратной транскрипции: вирусный фермент обратная транскриптаза (или ревертаза) синтезирует одну нить ДНК на матрице вирусной РНК, а затем уже на матрице синтезированной нити ДНК достраивает вторую, комплементарную ей нить. Образуется двунитевая молекула ДНК, которая интегрируется в хромосомную ДНК клетки во время клеточного деления, когда нет ядерной оболочки, (исключением является ВИЧ, ДНК которого активно проникает в ядро) и далее служит матрицей для синтеза молекул вирусных РНК. Эти РНК выходят из клеточного ядра и в цитоплазме клетки упаковываются в вирусные капсиды, способные инфицировать новые клетки.

По одной из гипотез, ретровирусы могли произойти от ретротранспозонов — подвижных участков генома эукариот[3].

Вирионы сферической формы размером 80—100 нм, покрыты внешней липопротеиновой оболочкой, имеющей ворсинки длиной 8—10 нм. Внутри икосаэдрального капсида находится спиральный рибонуклеопротеид. Наружная оболочка, капсидная мембрана и нуклеоид на разрезе вириона расположены концентрически. Чувствительны к эфиру, термолабильны, относительно резистентны к УФ-лучам. Характерной чертой семейства является наличие в составе вириона РНК-зависимой ДНК-полимеразы, иначе называемой обратной транскриптазой. Это и послужило основой для названия семейства (от лат. retro — обратный). Вирионы имеют 6 структурных белков, из них 4 внутренних (капсидных) негликолизированных и 2 гликопротеина оболочки.

Основными структурными генами кодирующими трансляцию белков, из которых в последующем строится вирус, являются gag (group-specific antigens), pol (polymerase), env (envelope). К регуляторным генам относятся: tat (трансактиватор всех вирусных белков), rev (регулятор экспрессии вирионных белков), vif (вирионный инфекционный фактор), vpr (функции остаются неясными), nef (негативный фактор экспрессии), vpx (функции неизвестны).

Капсидные белки несут группоспецифические межвидовые антигены и являются основой для разделения вирусов на роды и подроды. Гликопротеиды являются типоспецифическими антигенами, участвуют в реакции нейтрализации. Геном ретровирусов представлен однонитчатой РНК с молекулярной массой 7 мегадальтон и состоит из двух копий, каждая из которых является полноценным геномом и содержит одинаковую генетическую информацию, однако неизвестно, обе ли они функциональны. Нуклеиновая кислота онковирусов имеет гомологию с клеточной ДНК своего вида хозяина. Вирионная РНК неинфекционна. Вирусная РНК транскрибируется в ковалентно связанную двунитчатую ДНК, которая интегрируется с клеточной ДНК в виде ДНК-провируса. Провирус, экстрагированный из клетки, обладает инфекционностью. Многие вирусы этого семейства вызывают неопластические процессы, главным образом лейкемии и саркомы ряда видов животных. Нормальные клетки некоторых видов животных содержат интегрированные копии соответствующих видов онковирусов. Они могут никак не проявляться или активируются некоторыми физическими и химическими факторами, а возможно, и при инфекции другими онковирусами. Часто встречаются дефектные вирусы, размножающиеся с помощью вируса-помощника. Передаются вертикально и горизонтально.

Ретровирус раздваивает функции своего генетического материала: инфекционную функцию, то есть функцию самораспространения, выполняет вирусная РНК, а функцию экспрессии вирусных генов и синтеза молекул РНК, которые затем перенесут генетическую информацию в другие клетки, выполняет вирусная ДНК.

Попадая внутрь клетки в ходе вирусной инфекции, ретровирусная РНК служит матрицей для синтеза ДНК путём хорошо теперь известного процесса обратной транскрипции. Эта ДНК встраивается в геномную ДНК и с этого момента становится неотъемлемой частью генома клетки. А вирус становится провирусом. Провирус для животной клетки это то же самое, что профаг для бактериальной. Идеи лизогении, по-видимому, и привели Говарда Темина, который вместе с Дэвидом Балтимором открыл обратную транскрипцию, к идее провирусного состояния ретровирусов. По информационному содержанию ДНК-вариант генома ретровируса отличается от РНК-варианта только тем, что ДНК содержит не короткие концевые повторы, а длинные концевые повторы, LTR.

Особенности трансляции РНК ретровирусов[править | править код]

Находясь в составе геномной ДНК, вирусные гены транскрибируются под контролем LTR.

LTR, long terminal repeats. Последовательности LTR включают в себя последовательности STR. Возникновение LTR очень важно для экспрессии вирусных генов. Они содержат вирусные регуляторные транскрипционные элементы: промотор, энхансер, и другие. Например, некоторые вирусы содержат элементы, определяющие зависимость вирусной транскрипции от наличия определённых гормонов. LTR и являются теми регуляторными сигналами, которые вирус использует для эксплуатации клеточной транскрипционной машины в своих целях.

Продуктом транскрипции является полноразмерная вирусная РНК. Она должна транслироваться. И здесь вирусу необходимо решить такую проблему: нужно синтезировать много белков, а РНК одна. И в клетках эукариот РНК моноцистронны, то есть предназначены для синтеза только одного белка. Синтез белка в большинстве случаев начинается с ближайшего к кэп-сайту инициирующего кодона[4].

Если просмотреть открытую рамку считывания от этого ближайшего инициирующего кодона, то мы увидим, что если бы вирус пользовался традиционными способами экспрессии, то он смог бы синтезировать только полипептид GAG. А дальше идёт стоп- кодон. Как быть с POL и ENV? Кроме того, эти полипептиды очень длинны, а в вирусе содержатся гораздо более короткие. Проблема решается несколькими способами.

Во-первых, с помощью сплайсинга эта одна РНК превращается в нашем упрощённом варианте ещё в одну, более короткую. При этом последовательности, кодирующие ENV полипептид, оказываются рядом с инициирующим кодоном, ближайшим к кэп-сайту, и начинают транслироваться.

Во-вторых, разными для разных ретровирусов способами они ухитряются обойти стоп-кодон после открытой рамки считывания GAG и синтезировать сплавленный полипетид GAG-POL, который содержит последовательности обеих групп белков.

В-третьих, полученные длинные полипептиды подвергаются процессингу и разрезаются на множество белков, которые и функционируют либо в роли регуляторных, как, например, обратная транскриптаза, либо в роли структурных, как, например, белки оболочки зрелых вирусов.

Иными словами, ретровирусы используют гибкую тоталитарную систему для весьма тонкой регуляции синтеза большого разнообразия белков под контролем одного промотора.

Ретровирусы могут применяться в качестве векторов, например, в генотерапии. Механизм проникновения внутрь клеток при помощи слияния мембран. У них есть ряд преимуществ: широкий круг хозяев, стабильность в интегрированном в геном хозяина состоянии. Недостатки: сложно добиться высокого титра, заражает только делящиеся клетки.[источник не указан 1282 дня]

На март 2018 года в семейство включают 2 подсемейства с 6 и 5 родами соответственно[5]:

  1. ↑ Таксономия вирусов (англ.) на сайте Международного комитета по таксономии вирусов (ICTV).
  2. ↑ Атлас по медицинской микробиологии, вирусологии и иммунологии : Учебное пособие для студентов медицинских вузов / Под ред. А. А. Воробьева, А. С. Быкова. — М. : Медицинское информационное агентство, 2003. — С. 132. — ISBN 5-89481-136-8.
  3. ↑ А. Марков. Данные сравнительной геномики проливают свет на происхождение ретровирусов
  4. ↑ Kozak, 1986 (см. в статье консенсусная последовательность Козак)
  5. ↑ Таксономия вирусов (англ.) на сайте Международного комитета по таксономии вирусов (ICTV). (Проверено 6 апреля 2018).
  6. 1 2 3 4 Пиневич А. В., Сироткин А. К., Гаврилова О. В., Потехин А. А. Вирусология : учебник. — СПб. : Издательство Санкт-Петербургского университета, 2012. — С. 408—410. — ISBN 978-5-288-05328-3.
  7. 1 2 3 4 5 Сергеев В. А., Непоклонов Е. А., Алипер Т. И. Вирусы и вирусные вакцины. — М. : Библионика, 2007. — С. 348—351. — ISBN 5-98685-012-2.

Ротавирусы — Википедия

Ротавирусы
Rotavirus Reconstruction.jpg
Компьютерная реконструкция ротавируса, основанная на нескольких микрографах

промежуточные ранги

Род: Ротавирусы

Rotavirus

  • Rotavirus Аtypus
  • Rotavirus B
  • Rotavirus C
  • Rotavirus D
  • Rotavirus E
  • Rotavirus F
  • Rotavirus G
  • Rotavirus H
  • Rotavirus I

III: дцРНК-вирусы

Ротавирусы[3] (лат. Rotavirus) — род вирусов с двунитевой сегментированной РНК, принадлежащий семейству реовирусов (Reoviridae), возбудители ротавирусной инфекции.

Внешний вид частиц напоминает «колесо с широкой ступицей, короткими спицами и чётко очерченным ободком»[4], из-за чего они и получили своё название (лат. rota — «колесо»).

Известно 9 видов данного рода, обозначаемых латинскими буквами A—I[2]. Человек может инфицироваться видами A, B и C, при этом возбудителем более 90 % ротавирусных инфекций является наиболее часто встречаемый вид — ротавирус A. Виды с A по E могут вызывать болезни у других животных[5]. К виду Ротавирус A относится несколько серотипов[6]. Как и в случае с вирусом гриппа, здесь применяется двойная классификация по подтипам поверхностных белков: серотипы G определяются вариациями гликопротеина VP7, а серотипы P — протеазочувствительным белком VP4[7]. Поскольку гены, определяющие G- и P-типы, наследуются независимо друг от друга, встречаются различные их комбинации[8].

Геном ротавируса состоит из 11 уникальных двунитевых молекул РНК, состоящих в общей сложности из 18 555 нуклеотидов. Нити нумеруются от 1 до 11 в порядке уменьшения длины, каждая представляет собой один ген. Каждый ген кодирует один белок, за исключением гена 9, кодирующего два белка[9]. РНК окружена трёхслойным белковым капсидом в форме усечённого икосаэдра. Каждый из слоёв сложен отдельным вирусным белком. Внутренний и средний слои перфорированы каналами. Средний слой визуально содержит «спицы колеса» (белок VP6) и является важнейшим компонентом вириона.[10] Размер вируса — 76,5 нм в диаметре[11][12], суперкапсида нет[5].

Вирион сформирован шестью структурными вирусными протеинами (VP), которые обозначаются как VP1, VP2, VP3, VP4, VP6 и VP7. Инфицированная вирусом клетка продуцирует также шесть неструктурных белков (NSP), не являющихся частью вирусной частицы. Они обозначаются: NSP1, NSP2, NSP3, NSP4, NSP5 и NSP6.

Изображение единичной вирусной частицы в разрезе, молекулы РНК окружены белком VP6, в свою очередь окружённым белком VP7. Белок VP4 выступает на поверхности сферической частицы Упрощённая диаграмма расположения структурных белков ротавируса

По крайней мере шесть из двенадцати кодируемых геномом вируса белков связываются с РНК[13]. Роль этих белков в репликации вируса до конца не выяснена; их функции, как считается, относятся к синтезу РНК и его упаковке в вирион, транспортировке мРНК к месту репликации, трансляции мРНК и регуляции экспрессии генов[14].

Структурные белки[править | править код]

VP1 располагается в ядре вирусной частицы и представляет собой фермент — РНК-полимеразу[15]. В инфицированной клетке фермент осуществляет синтез мРНК для дальнейшего производства вирусных белков, а также синтез сегментов РНК вирусного генома для новых вирионов.

VP2 формирует ядро вируса и связывает вирусный геном[16].

VP3 также составляет ядро вириона и является ферментом гуанилил-трансферазой. Данный фермент катализирует образование 5′-кэп во время процессинга пре-мРНК[17]. Кэп стабилизирует вирусную мРНК, защищая её от утилизации нуклеазами[18].

VP4 расположен на поверхности вириона и выступает с неё в виде шипа[19]. Он связывается с рецепторами на поверхности клеток и управляет внедрением вируса в клетку[20]. Для того, чтобы вирус смог вызывать инфекцию, VP4 должен быть модифицирован находящимся в кишечнике ферментом трипсином в VP5* и VP8*[21]. Именно VP4 определяет вирулентность вируса. VP4 используется для серотипической классификации ротавирусов наряду с VP7.

VP6 формирует толщу капсида. Этот белок крайне антигенен и может использоваться для определения вида ротавируса[22]. Этот белок используется для определения инфекции, вызванной ротавирусом А, в лабораторных тестах[23].

VP7 — структурный гликопротеин, формирующий наружную поверхность вириона. Он определяет G-тип серологической классификации и вместе с VP4 участвует в формировании иммунитета к инфекции[11].

Неструктурные белки[править | править код]

NSP1, продукт гена 5, является неструктурным РНК-связывающим белком[24]. NSP1 также блокирует продукцию интерферона, части врождённой иммунной системы, защищающей клетки от вирусной инфекции. NSP1 вынуждает протеасомы к лизису ключевых сигнальных компонентов, необходимых для стимуляции продукции интерферона в заражённой клетке и для реакции на интерферон, секретируемый соседними клетками. Целями для протеолитической деградации становятся несколько регуляторных факторов интерферона.[25]

NSP2 — РНК-связывающий белок, аккумулируется в цитоплазматических включениях (вироплазмах) и участвует в репликации генома[26][27].

NSP3 связывается с вирусной мРНК в заражённых клетках и отвечает за выключение синтеза клеточных белков[28]. NSP3 инактивирует два фактора инициации трансляции, необходимые для синтеза белков из мРНК клетки-хозяина. Во-первых, NSP3 выталкивает поли(а)-связывающий белок (PABP) из фактора инициации трансляции eIF4F. PABP необходим для эффективной трансляции транскриптов с 3′-хвостами, которые обнаруживаются у большинства транскриптов клетки-хозяина. Во-вторых, NSP3 инактивирует eIF2, стимулируя его фосфорилирование. В то же время эффективная трансляция вирусной мРНК не требует двух этих факторов, поскольку эта РНК не содержит 3′-концов.[29]

NSP4 — вирусный энтеротоксин, вызывающий диарею. Является первым обнаруженным вирусным энтеротоксином[30].

NSP5 кодируется сегментом 11 генома ротавируса А и в инфицированных вирусом клетках накапливается в вироплазмах[31].

NSP6 является белком, связывающим нуклеиновые кислоты[32], кодируется геном 11 по внефазовой открытой рамке считывания[33].

Гены и белки ротавируса
Сегмент РНК (Ген)Размер, спаренных основанийБелокМолекулярная масса, kDaПоложениеКопий на частицуФункция
13302VP1125В вершинах ядра<25РНК-зависимая РНК-полимераза
22690VP2102Формирует внутреннюю оболочку ядра120Стимулирует вирусную РНК-репликазу
32591VP388В вершинах ядра<25метилтрансфераза, мРНК-кэпирующий фермент
42362VP487Шипы на поверхности капсида120Прикрепление к клетке, вирулентность
51611NSP159Неструктурный белок0Связывание 5’РНК, блокирование продукции интерферона
61356VP645Толща капсида (средний слой)780Структурная функция; видоспецифичный антиген
71104NSP337Неструктурный белок0Усиливает активность вирусной мРНК, выключает синтез клеточных белков
81059NSP235Неструктурный белок0НТФаза, участвует в упаковке РНК
91062VP71 VP7238 и 34На поверхности780Структурный белок; нейтрализирующий антиген
10751NSP420Неструктурный белок0Энтеротоксин
11667NSP5 NSP622Неструктурный белок0оцРНК- и дцРНК-связывающий модулятор активности NSP2, фосфопротеин

Таблица составлена на основе штамма обезьяньего ротавируса SA11[34][35][36]. Размеры генов у некоторых других штаммов могут отличаться.

Изображение единичной вирусной частицы в разрезе, молекулы РНК окружены белком VP6, в свою очередь окружённым белком VP7. Белок VP4 выступает на поверхности сферической частицы Упрощённое изображение цикла репликации ротавируса

Ротавирусы реплицируются главным образом в кишечнике[37] и заражают энтероциты ворсинок тонкого кишечника, что приводит к структурным и функциональным изменениям эпителия[38]. Тройная белковая оболочка делает их устойчивыми к кислой среде желудка и пищеварительным ферментам в кишечнике.

Существует два возможных пути проникновения вируса в клетку: прямая пенетрация через клеточную мембрану и эндоцитоз. Предполагается, что трансмембранное проникновение опосредовано гидрофобной областью VP5, являющегося продуктом расщепления VP4. Эта область закрыта у нерасщеплённого VP4, поэтому вирионы с белковыми шипами, не подвергшимися расщеплению, не способны проникнуть в клетку этим способом. Второй путь проникновения — эндоцитоз. Вирус проникает в клетку путём опосредованного рецепторами эндоцитоза и образует везикулы, известные как эндосомы. Белки в третьем слое (VP7 и шип VP4) нарушают мембрану эндосомы, создав разницу в концентрации кальция. Это вызывает распад VP7-тримеров на одиночные белковые субъединицы, при этом оставшиеся вокруг вирусной двунитевой РНК белки VP2 и VP6 образуют двухслойную частицу (DLP)[39].

Одиннадцать дцРНК-нитей остаются под защитой двух белковых оболочек, где вирусная РНК-зависимая РНК-полимераза создаёт транскрипты мРНК вирусного генома. Оставаясь в ядре вириона, вирусная РНК избегает врождённого иммунного ответа, называемого РНК-интерференцией и вызываемого присутствием двухцепочечной РНК.

Во время инфекции ротавирус производит мРНК для биосинтеза белка и репликации генов. Большинство ротавирусных белков накапливается в вироплазмах, где реплицируется РНК и собираются DLP. Вироплазмы формируются вокруг ядра клетки уже через два часа после начала вирусной инфекции и состоят из вирусных фабрик, создаваемых, как предполагается, двумя вирусными неструктурными белками: NSP5 и NSP2. Ингибирование NSP5 РНК-интерференцией приводит к резкому снижению репликации ротавирусов. DLP мигрируют в эндоплазматический ретикулум, где они получают свой третий, внешний, слой (образованный VP7 и VP4). Потомство вируса высвобождается из клетки путём лизиса[21][40][41].

  1. ↑ Таксономия вирусов (англ.) на сайте Международного комитета по таксономии вирусов (ICTV).
  2. 1 2 Таксономия вирусов (англ.) на сайте Международного комитета по таксономии вирусов (ICTV). (Проверено 26 марта 2017).
  3. ↑ Атлас по медицинской микробиологии, вирусологии и иммунологии : Учебное пособие для студентов медицинских вузов / Под ред. А. А. Воробьева, А. С. Быкова. — М. : Медицинское информационное агентство, 2003. — С. 117. — ISBN 5-89481-136-8.
  4. Грачева Н. М., Аваков А. А., Блохина Т. А., Щербаков И. Т. Клинические аспекты ротавирусной инфекции // Лечащий врач. — 1998. — № 3. — ISSN 1560-5175.
  5. 1 2 Kirkwood C. D. Genetic and antigenic diversity of human rotaviruses: potential impact on vaccination programs (англ.) // The Journal of Infectious Diseases : journal. — 2010. — September (vol. 202, no. Suppl). — P. S43—S48. — DOI:10.1086/653548. — PMID 20684716.
  6. O’Ryan M. The ever-changing landscape of rotavirus serotypes (неопр.) // The Pediatric Infectious Disease Journal. — 2009. — March (т. 28, № 3 Suppl). — С. S60—S62. — DOI:10.1097/INF.0b013e3181967c29. — PMID 19252426.
  7. Patton J.T. Rotavirus diversity and evolution in the post-vaccine world (англ.) // Discovery Medicine : journal. — 2012. — January (vol. 13, no. 68). — P. 85—97. — PMID 22284787.
  8. Desselberger U., Wolleswinkel-van den Bosch J., Mrukowicz J., Rodrigo C., Giaquinto C., Vesikari T. Rotavirus types in Europe and their significance for vaccination (англ.) // Pediatr. Infect. Dis. J. : journal. — 2006. — Vol. 25, no. 1 Suppl.. — P. S30—S41. — DOI:10.1097/01.inf.0000197707.70835.f3. — PMID 16397427.
  9. Desselberger, U.; Gray, James. Rotaviruses: methods and protocols (неопр.) / Desselberger, U.; Gray, James. — Totowa, N. J.: Humana Press (англ.)русск., 2000. — С. 2. — ISBN 0-89603-736-3.
  10. ↑ Carter, J., & Saunders, V. A. (2007). Virology: principles and applications. John Wiley & Sons; 148-151
  11. 1 2 Pesavento J. B., Crawford S. E., Estes M. K., Prasad B. V. Rotavirus proteins: structure and assembly (неопр.) // Curr. Top. Microbiol. Immunol.. — 2006. — Т. 309. — С. 189—219. — DOI:10.1007/3-540-30773-7_7. — PMID 16913048.
  12. Prasad B. V., Chiu W. Structure of rotavirus (неопр.) // Curr. Top. Microbiol. Immunol.. — 1994. — Т. 185. — С. 9—29. — PMID 8050286.
  13. Patton J. T. Structure and function of the rotavirus RNA-binding proteins (англ.) // Journal of General Virology (англ.)русск. : journal. — Microbiology Society (англ.)русск., 1995. — Vol. 76, no. 11. — P. 2633—2644. — DOI:10.1099/0022-1317-76-11-2633. — PMID 7595370. Архивировано 9 декабря 2012 года.
  14. Patton J. T. Rotavirus RNA replication and gene expression (неопр.) // Novartis Found. Symp.. — 2001. — Т. 238. — С. 64—77; discussion 77—81. — DOI:10.1002/0470846534.ch5. — PMID 11444036.
  15. Vásquez-del Carpió R., Morales J. L., Barro M., Ricardo A., Spencer E. Bioinformatic prediction of polymerase elements in the rotavirus VP1 protein (англ.) // Biol. Res. : journal. — 2006. — Vol. 39, no. 4. — P. 649—659. — DOI:10.4067/S0716-97602006000500008. — PMID 17657346.
  16. Arnoldi F., Campagna M., Eichwald C., Desselberger U., Burrone O. R. Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2 (англ.) // J. Virol. : journal. — 2007. — Vol. 81, no. 5. — P. 2128—2137. — DOI:10.1128/JVI.01494-06. — PMID 17182692.
  17. Angel J., Franco M. A., Greenberg H. B. Desk Encyclopedia of Human and Medical Virology (англ.) / Mahy B. W. J., Van Regenmortel M. H. V.. — Boston: Academic Press, 2009. — P. 277. — ISBN 0-12-375147-0.
  18. Cowling V. H. Regulation of mRNA cap methylation (англ.) // Biochem. J.. — 2010. — January (vol. 425, no. 2). — P. 295—302. — DOI:10.1042/BJ20091352. — PMID 20025612.
  19. Gardet A., Breton M., Fontanges P., Trugnan G., Chwetzoff S. Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies (англ.) // J. Virol. : journal. — 2006. — Vol. 80, no. 8. — P. 3947—3956. — DOI:10.1128/JVI.80.8.3947-3956.2006. — PMID 16571811.
  20. Arias C. F., Isa P., Guerrero C. A., Méndez E., Zárate S., López T., Espinosa R., Romero P., López S. Molecular biology of rotavirus cell entry (неопр.) // Arch. Med. Res.. — 2002. — Т. 33, № 4. — С. 356—361. — DOI:10.1016/S0188-4409(02)00374-0. — PMID 12234525.
  21. 1 2 Jayaram H., Estes M. K., Prasad B. V. Emerging themes in rotavirus cell entry, genome organization, transcription and replication (англ.) // Virus Research : journal. — 2004. — April (vol. 101, no. 1). — P. 67—81. — DOI:10.1016/j.virusres.2003.12.007. — PMID 15010218.
  22. Bishop R. F. Natural history of human rotavirus infection (неопр.) // Arch. Virol. Suppl.. — 1996. — Т. 12. — С. 119—128. — PMID 9015109.
  23. Beards G. M., Campbell A. D., Cottrell N. R., Peiris J. S., Rees N., Sanders R. C., Shirley J. A., Wood H. C., Flewett T. H. Enzyme-linked immunosorbent assays based on polyclonal and monoclonal antibodies for rotavirus detection (англ.) // J. Clin. Microbiol. : journal. — 1984. — 1 February (vol. 19, no. 2). — P. 248—254. — PMID 6321549.
  24. Hua J., Mansell E. A., Patton J. T. Comparative analysis of the rotavirus NS53 gene: conservation of basic and cysteine-rich regions in the protein and possible stem-loop structures in the RNA (англ.) // Virology : journal. — 1993. — Vol. 196, no. 1. — P. 372—378. — DOI:10.1006/viro.1993.1492. — PMID 8395125.
  25. Arnold M.M. The Rotavirus Interferon Antagonist NSP1: Many Targets, Many Questions (англ.) // Journal of Virology : journal. — 2016. — Vol. 90, no. 11. — P. 5212—5215. — DOI:10.1128/JVI.03068-15. — PMID 27009959.
  26. Kattoura M. D., Chen X., Patton J. T. The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase (англ.) // Virology : journal. — 1994. — Vol. 202, no. 2. — P. 803—813. — DOI:10.1006/viro.1994.1402. — PMID 8030243.
  27. Taraporewala Z. F., Patton J. T. Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae (англ.) // Virus Res. : journal. — 2004. — Vol. 101, no. 1. — P. 57—66. — DOI:10.1016/j.virusres.2003.12.006. — PMID 15010217.
  28. Poncet D., Aponte C., Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3′ end consensus sequence of viral mRNAs in infected cells (англ.) // J. Virol. : journal. — 1993. — 1 June (vol. 67, no. 6). — P. 3159—3165. — PMID 8388495.
  29. López, S; Arias, C.F. Rotavirus-host cell interactions: an arms race (англ.) // Current Opinion in Virology. — Elsevier, 2012. — August (vol. 2, no. 4). — P. 389—398. — DOI:10.1016/j.coviro.2012.05.001. — PMID 22658208.
  30. Hyser J. M., Estes M. K. Rotavirus vaccines and pathogenesis: 2008 (англ.) // Current Opinion in Gastroenterology. — Lippincott Williams & Wilkins (англ.)русск., 2009. — January (vol. 25, no. 1). — P. 36—43. — DOI:10.1097/MOG.0b013e328317c897. — PMID 19114772.
  31. Afrikanova I., Miozzo M. C., Giambiagi S., Burrone O. Phosphorylation generates different forms of rotavirus NSP5 (англ.) // Journal of General Virology (англ.)русск. : journal. — Microbiology Society (англ.)русск., 1996. — Vol. 77, no. 9. — P. 2059—2065. — DOI:10.1099/0022-1317-77-9-2059. — PMID 8811003. Архивировано 26 мая 2012 года.
  32. Rainsford E. W., McCrae M. A. Characterization of the NSP6 protein product of rotavirus gene 11 (англ.) // Virus Res. : journal. — 2007. — Vol. 130, no. 1—2. — P. 193—201. — DOI:10.1016/j.virusres.2007.06.011. — PMID 17658646.
  33. Mohan K. V., Atreya C. D. Nucleotide sequence analysis of rotavirus gene 11 from two tissue culture-adapted ATCC strains, RRV and Wa (англ.) // Virus Genes : journal. — 2001. — Vol. 23, no. 3. — P. 321—329. — DOI:10.1023/A:1012577407824. — PMID 11778700.
  34. ↑ Desselberger U. Rotavirus: basic facts. In Rotaviruses Methods and Protocols. Ed. Gray, J. and Desselberger U. Humana Press, 2000, pp. 1—8. ISBN 0-89603-736-3
  35. ↑ Patton J. T. Rotavirus RNA replication and gene expression. In Novartis Foundation. Gastroenteritis Viruses, Humana Press, 2001, pp. 64—81. ISBN 0-471-49663-4
  36. Claude M. Fauquet; J. Maniloff; Desselberger, U. Virus taxonomy: classification and nomenclature of viruses: 8th report of the International Committee on Taxonomy of Viruses (англ.). — Amsterdam: Elsevier/Academic Press, 2005. — P. 489. — ISBN 0-12-249951-4.
  37. Greenberg H. B., Estes M. K. Rotaviruses: from pathogenesis to vaccination (неопр.) // Gastroenterology. — 2009. — May (т. 136, № 6). — С. 1939—1951. — DOI:10.1053/j.gastro.2009.02.076. — PMID 19457420.
  38. Greenberg H. B., Clark H. F., Offit P. A. Rotavirus pathology and pathophysiology (неопр.) // Curr. Top. Microbiol. Immunol.. — 1994. — Т. 185. — С. 255—283. — PMID 8050281.
  39. Baker M., Prasad B. V. Rotavirus cell entry (неопр.) // Current Topics in Microbiology and Immunology. — 2010. — Т. 343. — С. 121—148. — DOI:10.1007/82_2010_34. — PMID 20397068.
  40. Patton J. T., Vasquez-Del Carpio R., Spencer E. Replication and transcription of the rotavirus genome (англ.) // Curr. Pharm. Des. : journal. — 2004. — Vol. 10, no. 30. — P. 3769—3777. — DOI:10.2174/1381612043382620. — PMID 15579070.
  41. Ruiz M. C., Leon T., Diaz Y., Michelangeli F. Molecular biology of rotavirus entry and replication (англ.) // TheScientificWorldJournal : journal. — 2009. — Vol. 9. — P. 1476—1497. — DOI:10.1100/tsw.2009.158. — PMID 20024520.

23. Механизм проникновения вируса в клетку

24. Где в хозяйской клетке размножаются днк- и где рнк- содержащие вирусы?

  • ДНК-содержащие вирусы. Репликация генома у большинства ДНК-содержащих вирусов происходит в клеточном ядре. Если клетка имеет соответствующий рецептор на своей поверхности, эти вирусы проникают в клетку либо путём непосредственного слияния с клеточной мембраной (напр. герпесвирусы), либо — что бывает чаще — путём рецептор-зависимого эндоцитоза. Большинство ДНК-содержащих вирусов полностью полагаются на синтетический аппарат клетки-хозяина для производства ихДНКиРНК, а также последующегопроцессинга РНК. Однако вирусы с крупными геномами могут сами кодировать большую часть необходимых для этого белков. Геному вируса эукариот необходимо преодолеть ядерную мембрану для того, чтобы получить доступ к ферментам, синтезирующим ДНК и РНК, в случае же бактерифагов ему достаточно просто проникнуть в клетку.

  • РНК-содержащие вирусы. Репликация таких вирусов обычно происходит в цитоплазме. РНК-содержащие вирусы можно подразделить на 4 группы в зависимости от способа их репликации. Механизм репликации определяется тем, является ли геном вируса одноцепочечным или двухцепочечным, вторым важным фактором в случае одноцепочечного генома является его полярность (может ли он непосредственно служить матрицей для синтеза белка рибосомами). Все РНК-вирусы используют собственную РНК-репликазудля копирования своих геномов.

25. Стадии взаимодействия вируса с клеткой

26. Что такое вирогения?

вирогения — форма сосуществования вируса с клеткой, при которой геном вируса включается в хромосомц клетки.

27. Механизмы противовирусного действия интрферона.

Противовирусное действие интерферонов проявляется их способностиподавляь внутриклеточное размножение широкого круга ДНК- и РНК- вирусов. Интерферон не взаимодействует сенпосредственно с вирусом, он не припятствует адсорбции вируса на клетк и его проникновению в клетку. Антивирусное действие интерыерона не связано с синтезон какого-то нового белка, а проявляется в повышенной активности ряда ключевых ферментов клеточного обмена веществ.

Один из возможных механизмов антивирусной активнсти интерферна залючается в том.что он увеличивает продукцию протеинкиназы, которая фосфолирует один из факторов инициации трансляции и ингибирует синтез белка. Другой механизм сводится к тому.что под влиянием интерферона накапливается олигоаденилатсинтетаза, приводящая к образованию 2,5-олигоадениловой кислоты.Последняя активирует клеточную эндонуклеазу, которая разрушает молекулы РНК, в том числе и мРНК.

28. Что такое протоонкоген и онкоген?

Протоонкоген — это группа нормальных генов клетки, оказывающая стимулирующее влияние на процессы клеточного деления, посредством специфических белков.

В результате мутации протоонкогены переходят в онкогены.

Онкогены — гены обуславливающие превращение нормальных клеток эукариот на злокачественные при участии онкобелков. Часто наодятся в ДНК-и РНК- вирусов, и в геноме опухолевых клеток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *