Строение крови человека под микроскопом – Лабораторная работа «Сравнение крови человека с кровью лягушки» Рассмотреть препараты крови человека и крови лягушки. Зарисовать эритроциты.

Содержание

Диагностика по крови: как это делается

Кровь — удивительное творение природы. Можно без преувеличения сказать, что она является источником жизни. Ведь именно через кровь мы получаем кислород и питательные вещества, именно с кровью уносятся из клеток «отходы производства». Любой недуг обязательно находит свое отражение в крови. На этом построен целый ряд диагностических методик. И шарлатанских тоже.

Кровь была одной из первых жидкостей, которую любознательные медики поместили под только что изобретенный микроскоп. С тех пор прошло более 300 лет, микроскопы стали намного совершеннее, но глаза врачей по‑прежнему смотрят на кровь в окуляры, выискивая признаки патологии.

На стекле

Антони ван Левенгук определенно получил бы несколько Нобелевских премий, живи он в наше время. Но в конце XVII века этой награды не было, поэтому Левенгук довольствуется всемирной известностью конструктора микроскопов и славой основателя научной микроскопии. Добившись в своих приборах 300-кратного увеличения, он сделал множество открытий, в том числе первым описал эритроциты.

Последователи Левенгука довели его детище до совершенства. Современные оптические микроскопы способны давать увеличение до 2000 раз и позволяют рассматривать прозрачные биологические объекты, включая клетки нашего организма.

Другой нидерландец — физик Фриц Цернике — в 1930-х годах заметил, что ускорение прохождения света по прямой делает изображение изучаемой модели более детальным, выделяя отдельные элементы на светлом фоне. Для создания интерференции в образце Цернике придумал систему колец, которые располагались как в объективе, так и в конденсаторе микроскопа. Если правильно настроить (юстировать) микроскоп, то волны, которые идут от источника света, будут попадать в глаз с определенным смещением по фазе. И это позволяет значительно улучшить изображение изучаемого объекта.

Как должна выглядеть Русалочка с точки зрения науки

Как должна выглядеть Русалочка с точки зрения науки

Метод получил название фазово-контрастной микроскопии и оказался настолько прогрессивным и перспективным для науки, что в 1953 году Цернике была присуждена Нобелевская премия по физике с формулировкой «За обоснование фазово-контрастного метода, особенно за изобретение фазово-контрастного микроскопа». Почему это открытие так высоко оценили? Раньше, чтобы рассмотреть под микроскопом ткани и микроорганизмы, их приходилось обрабатывать различными реактивами- фиксаторами и красителями. Живые клетки при таком раскладе увидеть не получалось, химикаты просто убивали их. Изобретение Цернике открыло в науке новое направление — прижизненное микроскопирование.

В XXI веке биологические и медицинские микроскопы стали цифровыми, способными работать в разных режимах — как в фазовом контрасте, так и в темном поле (изображение формируется светом, дифрагированным на объекте, и в результате объект выглядит очень светлым на темном фоне), а также в поляризованном свете, который нередко позволяет выявлять структуру объектов, лежащую за пределами обычного оптического разрешения.

Казалось бы, медикам нужно радоваться: в их руки попал мощнейший инструмент изучения тайн и загадок человеческого организма. Но этот высокотехнологичный метод очень заинтересовал не только серьезных ученых, но и шарлатанов и мошенников от медицины, которые посчитали фазово-контрастное и темнопольное микроскопирование очень удачным способом выуживания энных сумм денег у доверчивых граждан.


Жидкая ткань

Как должна выглядеть Русалочка с точки зрения науки

Кровь относится к соединительным тканям. Да, как бы нелепо это не звучало на первый взгляд, она является ближайшим родственником послеоперационного рубца и двоюродной сестрой большеберцовой кости. Основной признак, характерный для таких тканей — малое количество клеток и большое содержание «наполнителя», который называется межуточным веществом. Клетки крови называются форменными элементами и делятся на три большие группы: Красные кровяные клетки (эритроциты). Самые многочисленные представители форменных элементов. Имеют форму двояковогнутого диска диаметром 6−9 мкм и толщиной от 1 (в центре) до 2,2 мкм (по краям). Являются переносчиками кислорода и углекислого газа, для чего содержат в себе гемоглобин. В одном литре крови найдется примерно 4−5 * 1012 эритроцитов. Белые кровяные клетки (лейкоциты). Разнообразные по форме и функциям, но главное — именно они обеспечивают защиту организма от внешних и внутренних напастей (иммунитет). Размер от 7−8 мкм (лимфоциты) до 21 мкм в диаметре (макрофаги). По форме некоторые лейкоциты напоминают амеб и способны выходить за пределы кровяного русла. А лимфоциты похожи скорее на морскую мину, утыканную шипами рецепторов. В одном литре крови содержится примерно 6−8 * 10
9
лейкоцитов. Кровяные пластинки (тромбоциты). Это «осколки» гигантских клеток костного мозга, обеспечивающие свертывающую функцию крови. Форма их может быть разной, размер — от 2 до 5 мкм, то есть в норме — меньше любого другого форменного элемента. Количество — 150−400 * 109 на литр. Жидкая часть крови называется плазмой, на нее приходится примерно 55−60 процентов объема. В состав плазмы входят самые разнообразные органические и неорганические вещества и соединения: от ионов натрия и хлора до витаминов и гормонов. Из плазмы крови образуются все остальные жидкости организма.

Она живая и шевелится

У пациента, который решится пройти обследование методом «Диагностика по живой капле крови» (варианты названия — «Тестирование на темнопольном микроскопе» или «Гемосканирование»), берут каплю крови, не окрашивают, не фиксируют, наносят на предметное стекло и изучают, просматривая образец на экране монитора. По результатам исследования ставятся диагнозы и назначается лечение.

Гемосканирование можно считать венцом творения мошеннической мысли, шедевром и высшим пилотажем околомедицинского шарлатанства. Во‑первых, используется реально существующее физическое явление (про Нобелевку помните?) и самая настоящая сложная медицинская аппаратура. И действительно дорогостоящая. Стоимость диагностического комплекса обходится не менее чем в 3−4 тысячи долларов, и продают его солидные поставщики серьезной медицинской техники. Аппаратура имеет все необходимые — подлинные и совершенно заслуженные — сертификаты и свидетельства. Во‑вторых, никаких проблем с лицензированием. Лабораторная диагностика — вполне законный вид медицинской деятельности, а микроскоп, позволяющий осуществлять фазово-контрастное или темнопольное микроскопирование, — вполне законная медицинская диагностическая аппаратура. Мало того, она широко применяется в медицине, то есть существуют сертифицированные и дипломированные специалисты. В-третьих, действительно под микроскопом можно обнаружить массу признаков тех или иных заболеваний. Например, изменение формы эритроцитов при серповидноклеточной анемии. А еще можно увидеть внутриклеточных паразитов все в тех же эритроцитах, бартонеллами называются. И даже яйца гельминтов в крови теоретически обнаружить можно.

Как должна выглядеть Русалочка с точки зрения науки

Арба вижу — арба пою

Так в чем же подвох? В интерпретации. В том, как объясняют «темнопольщики» те или иные изменения в крови, как называют обнаруженные артефакты, какие диагнозы ставят и чем лечат. Разобраться в том, что это обман, сложно даже врачу. Нужна специальная подготовка, опыт работы с образцами крови, сотни просмотренных «стекол» — как крашеных, так и «живых». Как в обычном поле, так и в темном. К счастью, у автора статьи такой опыт имеется, как имеется он и у тех экспертов, с которыми сверялись результаты расследования.

Правильно говорится — лучше один раз увидеть. И своим глазам человек поверит куда быстрее, чем всем устным увещеваниям. На это и рассчитывают «лаборанты». К микроскопу подсоединен монитор, который отображает все, что видно в мазке. Вот вы лично когда последний раз видели собственные эритроциты? Вот то-то и оно. Интересно ведь. А пока завороженный посетитель любуется клетками родной любимой крови, «лаборант» начинает интерпретировать то, что он видит. Причем делает это по принципу акына: «Арба вижу- арба пою». Про какую «арбу» могут напеть шарлатаны, подробно читайте во врезке.


Кровавый ужас

Как должна выглядеть Русалочка с точки зрения науки

О каких страшных диагнозах вам могут напеть шарлатаны, и почему их слов не надо бояться, лучше пояснять на конкретных примерах. Фото взяты с сайтов, рекламирующих методику гемосканирования. Глистов гемосканеры находят практически у каждого пациента. Действительно, в крови можно обнаружить яйца и личинки некоторых гельминтов. Например, у шистосом есть период гематогенной диссеминации, то есть распространения по организму с током крови. Вот только в периферической крови их обнаружить невозможно, слишком маленький диаметр у капилляров пальца, откуда берут материал для анализа. Яйца имеют размеры 140−240 на 50−85 мкм. Средний размер эритроцита — 7,5 мкм. Вывод: ни яйцо, ни тем более личинка не могут быть размером с эритроцит. И даже с два эритроцита. А знаете, что на фото выделено красным кружком? Это эритроцит, который находится перпендикулярно к плоскости предметного стекла. Ведь каплю крови не размазывают по нему слоем ровно в одну клетку. Поэтому не все красные кровяные тельца смотрят «лицом» на исследователя. Кто-то в анфас, а кто-то и боком. Кстати, мембрана эритроцитов очень гибкая, именно поэтому они умудряются протиснуться даже в самые узкие капилляры. В нашем организме действительно образуются кристаллы. Чаще всего в моче, но иногда встречаются и в крови, например игольчатые кристаллы уратов (солей мочевой кислоты). Подпись к приведенному фото гласила «Кристаллы ортофосфорной кислоты». Вообще-то кристаллы настоящей ортофосфорной кислоты (точнее, ее полугидрата) бесцветны и гексагональны, и добиться такой концентрации в крови, чтобы она начала кристаллизоваться, нереально. Если в организме вдруг и будут образовываться кристаллы фосфорной кислоты, то они будут фосфатом кальция (из него и состоят фосфатные камни в почках и желчном пузыре). А то, что нам пытаются представить здесь под видом кристаллов ортофосфорной кислоты — самая обычная грязь на объективе микроскопа.

После того как пациент будет напуган и сбит с толку непонятными, а иногда и откровенно страшными картинками, ему объявляют «диагнозы». Чаще всего много, и один кошмарнее другого. Например, расскажут, что плазма крови инфицирована грибками или бактериями. Неважно, что увидеть их даже при таком увеличении достаточно проблематично, а уж отличить друг от друга- тем более. Микробиологам приходится сеять возбудителей различных болезней на специальные питательные среды, чтобы потом можно было точно сказать, кто вырос, к каким антибиотикам чувствителен и т. д. Микроскопия в лабораторных исследованиях применяется, но либо со специфичными красителями, либо вообще с флуоресцирующими антителами, которые прикрепляются к бактериям и таким образом делают их видимыми.

Но даже если, чисто теоретически, в крови под микроскопом будет обнаружен такой гигант мира бактерий, как кишечная палочка (1−3 мкм длиной и 0,5−0,8 мкм шириной), это будет означать только одно: у пациента сепсис, заражение крови. И он должен лежать горизонтально с температурой под 40 и прочими признаками тяжелейшего состояния. Потому что в норме кровь стерильна. Это одна из основных биологических констант, которая проверяется достаточно просто- посевом крови на различные питательные среды.


Внутриклеточные паразиты

Как должна выглядеть Русалочка с точки зрения науки

Опасность может таиться не только в плазме крови, но даже внутри эритроцитов. Это чистая правда. Только в случае с гемосканированием выглядит она достаточно странно. Например, пациенту показывают его эритроциты со светлым пятном внутри каждого и ставят «диагноз»: «Эритроциты инфицированы бактериями». Вспоминается только два паразита, жизненный цикл которых связан с эритроцитом, — бартонелла и 4 вида плазмодиев, вызывающих различные типы малярии. Но они — не бактерии, да и с размерами явная несостыковка. Средний диаметр эритроцита, как уже говорилось, — 7,5 мкм. В случае малярии в нем помещается 10−20 мерозоитов (бесполая стадия размножения плазмодия). Бартонеллы также значительно мельче эритроцита — от 1 до 3 мкм в длину и 0,2−0,3 мкм в ширину — и под микроскопом они выглядят иначе. Так что и они на роль «страшных паразитов» не подходят. Секрет прост. Эритроциты — объемные клетки, центр которых тоньше, чем периферия. А теперь представим, что мы пропускаем свет через такие образования. Что будем видеть? Более толстая периферия будет темной, а более тонкий центр свет будет пропускать лучше. Вот вам и объяснение феномена «круглых бактерий» внутри эритроцита. Вот скажите честно: если бы вам на мониторе показали эту фотографию и сказали, что сия каракатица живет у вас в крови, вы бы последние деньги отдали, чтобы от нее избавиться, не так ли? На такую реакцию и рассчитывают «диагносты». А между тем это фрагмент антенны комара-звонца (семейство Chironomidae). И попал он в образец исследуемой крови из воздуха. Там много чего летает, в том числе и хитиновые ошметки всяких разных насекомых.

А еще могут рассказать, что кровь «закислена». Смещение рН (кислотности) крови, называемое ацидозом, действительно встречается при многих заболеваниях. Вот только измерять кислотность на глаз пока никто не научился, нужен контакт датчика с исследуемой жидкостью. Могут обнаружить «шлаки» и рассказать про степени зашлакованности организма по данным ВОЗ (Всемирная организация здравоохранения). Но если поискать по документам на официальном сайте этой организации, то ни про шлаки, ни про степени зашлакованности там ни слова нет. Среди диагнозов могут встречаться синдром обезвоживания, синдром интоксикации, признаки ферментопатии, признаки дисбактериоза и масса других, не имеющих отношения либо к медицине, либо к данному конкретному больному.

Апофеоз диагностики, конечно же, назначение лечения. Оно, по странному стечению обстоятельств, будет проводиться биологически активными добавками к пище. Которые по сути и по закону лекарствами не являются и лечить не могут в принципе. Тем более такие страшные болезни, как грибковый сепсис. Но гемосканеров это не смущает. Ведь лечить они будут не человека, а те самые диагнозы, которые ему наставлены с потолка. И при повторной диагностике — будьте уверены — показатели улучшатся.

Что нельзя увидеть в микроскоп

Что бы вам ни говорили «специалисты», с помощью микроскопа в капле крови, взятой из пальца, нельзя увидеть pH крови; дефицит ферментов для расщепления белков; уровень водно-солевого обмена; пищевые мутагенные/тератогенные токсины; поражение эритроцитов почечными токсинами / свободными радикалами; паразитов, грибы, бактерии, яйца глистов, цисты; активность, количество и качество иммунных клеток.

Тестирование по «живой капле крови» зародилось в США в 1970-х годах. Постепенно медицинской общественности и регулирующим органам стала ясна истинная сущность и ценность методики. С 2005 года началась кампания по запрету этой диагностики как мошеннической и не имеющей отношения к медицине. «Пациента обманывают трижды. Первый раз- когда диагностируют болезнь, которой нет. Второй раз- когда назначают долгое и дорогостоящее лечение. И третий раз- когда подделывают повторное исследование, которое обязательно будет свидетельствовать либо об улучшении, либо о возврате к норме» (доктор Стивен Баррет, вице-президент Американского национального совета против медицинского мошенничества, научный консультант Американского совета по науке и здоровью).

Как должна выглядеть Русалочка с точки зрения науки

Взятки гладки?

Доказать, что вас обманули, практически нереально. Во‑первых, как уже говорилось, не всякий врач сможет заподозрить в методике подлог. Во‑вторых, даже если пациент пойдет в обычный диагностический центр и у него там ничего не найдут, можно в крайнем случае свалить все на врача-оператора, проводившего диагностику. И действительно, визуальная оценка сложных изображений целиком и полностью зависит от квалификации и даже физического состояния того, что проводит оценку. То есть метод не является достоверным, поскольку напрямую зависит от человеческого фактора. В-третьих, всегда можно сослаться на некие тонкие материи, которые пациенту понять не дано. Это последний рубеж, на котором обычно насмерть стоят все околомедицинские мошенники.

Что же мы имеем в сухом остатке? Непрофессиональных лаборантов, которые выдают случайные артефакты (а может, и срежиссированные) в капле крови за страшные заболевания. И потом предлагают лечить их пищевыми добавками. Естественно, все это за деньги, и очень немаленькие.

Имеет ли данная методика диагностическую ценность? Имеет. Безусловно. Такую же, как и традиционная микроскопия мазка. Можно увидеть, например, серповидноклеточную анемию. Или перницитозную анемию. Или другие действительно серьезные заболевания. Только вот, к огромному сожалению мошенников, встречаются они редко. Да и не продашь таким пациентам толченый мел с аскорбинкой. Им нужно настоящее лечение.

А так — все очень просто. Обнаруживаем несуществующую болезнь, а потом успешно ее излечиваем. Все довольны, особенно доволен вон тот гражданин, у которого из крови изгнали обломок антенны космической связи комара-звонца… И никому не жалко пущенных на ветер, а точнее, на обогащение мошенников, денег.

Как должна выглядеть Русалочка с точки зрения науки

Впрочем, не всем. Некоторые отстаивают свои права во всех возможных инстанциях. В распоряжении автора есть копия письма Управления Росздравнадзора по Краснодарскому краю, куда обратились пострадавшие от гемосканирующих «врачей». Пациенту была диагностирована куча болезней, которые предлагалось лечить не меньшей кучей биологически активных добавок к пище. По результатам проверки выяснилось, что медицинское учреждение, проводившее диагностику, нарушает лицензионные требования, не заключает договор на оказание платных услуг (врач берет деньги наличными), нарушаются правила ведения медицинской документации. Были выявлены и другие нарушения.

Цитатой из письма Центрального аппарата Росздравнадзора и хотелось бы закончить статью: «Методика ‘Гемосканирование’ на рассмотрение и получение разрешения на применение в качестве новой медицинской технологии в Росздравнадзор не представлялась и не разрешена к применению в медицинской практике». Яснее не скажешь.

Статья «Темные поля крови» опубликована в журнале «Популярная механика» (№1, Январь 2010).

Фото крови человека под микроскопом – Статьи на сайте Четыре глаза

Главная » Статьи и полезные материалы » Микроскопы » Статьи о микроскопах, микропрепаратах и исследованиях микромира » Кровь человека под микроскопом

Хотели ли вы когда-нибудь увидеть своими глазами, как выглядит кровь человека под микроскопом? Ведь это же одна из наиболее интересных тканей организма! Она состоит из множества клеток разных типов и выполняет жизненно важные функции: транспортную (переносит кислород по телу), защитную (специальные клетки устраняют вредоносные микроорганизмы) и гомеостатическую (поддерживает постоянство внутренней среды организма).

Чтобы вы смогли рассмотреть, как устроена кровь человека, микроскоп должен давать не менее 1000-кратного увеличения. Учитывайте это при его выборе.

Как выглядит кровь под микроскопом?

При большом увеличении можно увидеть все три типа клеток крови.

Эритроциты – красные тельца дисковидной формы, которые транспортируют кислород по телу человека. Диаметр – 7–10 мкм. Цвет этих клеток обусловлен содержанием в них гемоглобина – специального вещества, которое позволяет им переносить молекулы кислорода. Эти клетки наиболее многочисленны, поэтому, рассматривая кровь человека под микроскопом, их вы увидите в первую очередь.

Лейкоциты – клетки округлой формы размером от 7 до 20 мкм. Именно они и формируют иммунную систему, защищающую организм от болезнетворных вирусов, бактерий и грибков. Существует несколько разновидностей лейкоцитов: лимфоциты, моноциты, базофилы, нейтрофилы и эозинофилы.

Тромбоциты – плоские бесцветные клетки, отвечающие за свертываемость крови. У них наименьшие размеры – от 2 до 4 мкм, – поэтому подробно рассмотреть их можно только с помощью профессионального микроскопа.

Кровь под микроскопом – фото

Если у вас нет возможности приобрести микроскоп, вы можете увидеть многочисленные фото клеток крови в интернете. Многие из них сделаны с использованием профессиональной оптической и фототехники, поэтому очень детальны и дают возможность узнать все тонкости клеточного строения крови.

кровь под микроскопом, кровь под микроскопом фото, кровь человека микроскоп
Кровь человека под микроскопом, 150x

Но никакие фотографии не могут заменить настоящее изучение микропрепарата в микроскоп! И если вы – любитель постигать новое, задумайтесь о долгожданной покупке оптической техники и откройте для себя все тайны микромира, не видимого невооруженным глазом.

Если же вы хотите поэкспериментировать и сделать фото крови под микроскопом самостоятельно, для начала вам хватит даже смартфона или фотоаппарата начального уровня. С помощью адаптера вы сможете подсоединить гаджет к микроскопу и сделать красочные снимки.

4glaza.ru
Сентябрь 2017

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.


Смотрите также

Другие обзоры и статьи о микроскопах, микропрепаратах и микромире:

  • Видео! Микроскоп Levenhuk 870T: видеообзор (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видео соленой воды (канал MAD SCIENCE, Youtube.com)
  • Медицинские микроскопы Levenhuk MED: обзорная статья на сайте levenhuk.ru
  • Видео! Портативный микроскоп Bresser National Geographic 20–40x и другие детские приборы линейки: видеообзор (канал «Татьяна Михеева», Youtube.com)
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Видео бактерий под микроскопом Levenhuk Rainbow 2L PLUS (канал «Микромир под микроскопом», Youtube.ru)
  • Обзор микроскопа Levenhuk Rainbow 50L PLUS на сайте levenhuk.ru
  • Видео! Подробный обзор серии детских микроскопов Levenhuk LabZZ M101 (канал Kent Channel TV, Youtube.ru)
  • Обзор набора оптической техники Levenhuk LabZZ MTВ3 (микроскоп, телескоп и бинокль) на сайте levenhuk.ru
  • Видео! Микроскоп Levenhuk DTX 90: распаковка и видеообзор цифрового микроскопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Видеопрезентация увлекательной и красочной книги для детей «Невидимый мир» (канал LevenhukOnline, Youtube.ru)
  • Видео! Большой обзор биологического микроскопа Levenhuk 3S NG (канал Kent Channel TV, Youtube.ru)
  • Микроскопы Levenhuk Rainbow 2L PLUS
  • Видео! Микроскопы Levenhuk Rainbow и LabZZ (канал LevenhukOnline, Youtube.ru)
  • Микроскоп Levenhuk Rainbow 2L PLUS Lime\Лайм. Изучаем микромир
  • Выбираем лучший детский микроскоп
  • Видео! Микроскопы Levenhuk Rainbow 2L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 2L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D2L: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D50L PLUS: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Обзор биологического микроскопа Levenhuk Rainbow 50L
  • Видео! Видеообзор школьных микроскопов Levenhuk Rainbow 2L и 2L PLUS: лучший подарок ребенку (канал KentChannelTV, Youtube.ru)
  • Видео! Как выбрать микроскоп: видеообзор для любителей микромира (канал LevenhukOnline, Youtube.ru)
  • Галерея фотографий! Наборы готовых микропрепаратов Levenhuk
  • Микроскопия: метод темного поля
  • Видео! «Один день инфузории-туфельки»: видео снято при помощи микроскопа Levenhuk 2L NG и цифровой камеры Levenhuk (канал LevenhukOnline, Youtube.ru)
  • Видео! Обзор микроскопа Levenhuk Rainbow 2L NG Azure на телеканале «Карусель» (канал LevenhukOnline, Youtube.ru)
  • Обзор микроскопа Levenhuk Фиксики Файер
  • Совместимость микроскопов Levenhuk с цифровыми камерами Levenhuk
  • Как работает микроскоп
  • Как настроить микроскоп
  • Как ухаживать за микроскопом
  • Типы микроскопов
  • Техника приготовления микропрепаратов
  • Галерея фотографий! Что можно увидеть в микроскопы Levenhuk Rainbow 50L, 50L PLUS, D50L PLUS
  • Сетка или шкала. Микроскоп и возможность проведения точных измерений
  • Обычные предметы под объективом микроскопа
  • Насекомые под микроскопом: фото с названиями
  • Инфузории под микроскопом
  • Изобретение микроскопа
  • Как выбрать микроскоп
  • Как выглядят лейкоциты под микроскопом
  • Что такое лазерный сканирующий микроскоп?
  • Микроскоп люминесцентный: цена высока, но оправданна
  • Микроскоп для пайки микросхем
  • Иммерсионная система микроскопа
  • Измерительный микроскоп
  • Микроскопы от самых больших профессиональных моделей до простых детских
  • Микроскоп профессиональный цифровой
  • Силовой микроскоп: для серьезных исследований и развлечений
  • Лечение зубов под микроскопом
  • Кровь человека под микроскопом
  • Галогенные лампы для микроскопов
  • Французские опыты – микроскопы и развивающие наборы от Bondibon
  • Наборы препаратов для микроскопа
  • Юстировка микроскопа
  • Микроскоп для ремонта электроники
  • Операционный микроскоп: цена, возможности, сферы применения
  • «Шкаловой микроскоп» – какой оптический прибор так называют?
  • Бородавка под микроскопом
  • Вирусы под микроскопом
  • Принцип работы темнопольного микроскопа
  • Покровные стекла для микроскопа – купить или нет?
  • Увеличение оптического микроскопа
  • Оптическая схема микроскопа
  • Схема просвечивающего электронного микроскопа
  • Устройство оптического микроскопа у теодолита
  • Грибок под микроскопом: фото и особенности исследования
  • Зачем нужна цифровая камера для микроскопа?
  • Предметный столик микроскопа – что это и зачем он нужен?
  • Микроскопы проходящего света
  • Органоиды, обнаруженные с помощью электронного микроскопа
  • Паук под микроскопом: фото и особенности изучения
  • Из чего состоит микроскоп?
  • Как выглядят волосы под микроскопом?
  • Глаз под микроскопом: фото насекомых
  • Микроскоп из веб-камеры своими руками
  • Микроскопы светлого поля
  • Механическая система микроскопа
  • Объектив и окуляр микроскопа
  • USB-микроскоп для компьютера
  • Универсальный микроскоп – существует ли такой?
  • Песок под микроскопом
  • Муравей через микроскоп: изучаем и фотографируем
  • Растительная клетка под световым микроскопом
  • Цифровой промышленный микроскоп
  • ДНК человека под микроскопом
  • Как сделать микроскоп в домашних условиях
  • Первые микроскопы
  • Микроскоп стерео: купить или нет?
  • Как выглядит раковая клетка под микроскопом?
  • Металлографический микроскоп: купить или не стоит?
  • Флуоресцентный микроскоп: цена и особенности
  • Что такое «ионный микроскоп»?
  • Грязь под микроскопом
  • Как выглядит клещ под микроскопом
  • Как выглядит червяк под микроскопом
  • Как выглядят дрожжи под микроскопом
  • Что можно увидеть в микроскоп?
  • Зачем нужны исследовательские микроскопы?
  • Бактерии под микроскопом: фото и особенности наблюдения
  • На что влияет апертура объектива микроскопа?
  • Аскариды под микроскопом: фото и особенности изучения
  • Как использовать микропрепараты для микроскопа
  • Изучаем ГОСТ: микроскопы, соответствующие стандартам
  • Микроскоп инструментальный – купить или нет?
  • Где купить отсчетный микроскоп и зачем он нужен?
  • Атом под электронным микроскопом
  • Как кусает комар под микроскопом
  • Как выглядит муха под микроскопом
  • Амеба: фото под микроскопом
  • Подкованная блоха под микроскопом
  • Вша под микроскопом
  • Плесень хлеба под микроскопом
  • Зубы под микроскопом: фото и особенности наблюдения
  • Снежинка под микроскопом
  • Бабочка под микроскопом: фото и особенности наблюдений
  • Самый мощный микроскоп – как выбрать правильно?
  • Рот пиявки под микроскопом
  • Мошка под микроскопом: челюсти и строение тела
  • Микробы на руках под микроскопом – как увидеть?
  • Вода под микроскопом
  • Как выглядит глист под микроскопом
  • Клетка под световым микроскопом
  • Клетка лука под микроскопом
  • Мозги под микроскопом
  • Кожа человека под микроскопом
  • Кристаллы под микроскопом
  • Основное преимущество световой микроскопии перед электронной
  • Конфокальная флуоресцентная микроскопия
  • Зондовый микроскоп
  • Принцип работы сканирующего зондового микроскопа
  • Почему трудно изготовить рентгеновский микроскоп?
  • Макровинт и микровинт микроскопа – что это такое?
  • Что такое тубус в микроскопе?
  • Главная плоскость поляризатора
  • На что влияет угол между главными плоскостями поляризатора и анализатора?
  • Назначение поляризатора и анализатора
  • Метод изучения – микроскопия на практике
  • Микроскопия осадка мочи: расшифровка
  • Анализ «Микроскопия мазка»
  • Сканирующая электронная микроскопия
  • Методы световой микроскопии
  • Оптическая микроскопия (световая)
  • Световая, люминесцентная, электронная микроскопия – разные методы исследований
  • Темнопольная микроскопия
  • Фазово-контрастная микроскопия
  • Поляризаторы естественного света
  • Шотландский физик, придумавший поляризатор
  • Механизм фокусировки в микроскопе
  • Что такое полевая диафрагма?

Кровь человека под микроскопом описание. Клетки крови человека и их функции

Увеличение враз позволяет разглядеть детали размером 1-5 нанометров (то есть миллиардных долей метра).

Первое СЭМ-изображение получил в 1935 году Макс Кнолль, а уже в 1965 году Кембриджская инструментальная компания предложила фирме «Дюпон» свой «Стереоскан». Сейчас такие устройства широко применяются в научно-исследовательских центрах.

Рассматривая предлагаемые ниже снимки, вы совершите путешествие по своему телу, начиная с головы и заканчивая кишечником и органами таза. Вы увидите, как выглядят нормальные клетки и что происходит с ними, когда их поражает рак, а также получите наглядное представление о том, как, скажем, происходит первая встреча яйцеклетки и сперматозоида.

Красные кровяные тельца

Здесь изображена, можно сказать, основа вашей крови — красные кровяные тельца (RBC). На этих симпатичных двояковогнутых клетках лежит ответственная задача разносить по всему телу кислород. Обычно в одном кубическом миллиметре крови таких клеток 4-5 миллионов у женщин и 5-6 миллионов у мужчин. У людей, живущих на высокогорье, где ощущается недостаток кислорода, красных телец еще больше.

Расщепленный человеческий волос

Чтобы избежать такого невидимого для обычного глаза расщепления волос, надо регулярно стричься и пользоваться хорошими шампунями и кондиционерами.

Клетки Пуркинье

Из 100 миллиардов нейронов вашего мозга клетки Пуркинье одни из самых крупных. Помимо прочего, они отвечают в коре мозжечка за двигательную координацию. На них губительно действуют как отравление алкоголем или литием, так и аутоиммунные заболевания, генетические отклонения (включая аутизм), а также нейродегенеративные болезни (Альцгеймера, Паркинсона, рассеянный склероз и т. п.).

Чувствительные волоски уха

Вот как выглядят стереоцилии, то есть чувствительные элементы вестибулярного аппарата внутри вашего уха. Улавливая звуковые колебания, они контролируют ответные механические движения и действия.

Кровеносные сосуды зрительного нерва

Здесь изображены кровеносные сосуды сетчатки глаза, выходящие из окрашенного в черный цвет диска зрительного нерва. Этот диск представляет собой «слепое пятно», так как на этом участке сетчатки нет световых рецепторов.

Вкусовой сосочек языка

На языке у человека находится околовкусовых рецепторов, которые помогают определить на вкус соленое, кислое, горькое, сладкое и острое.

Зубной налет

Чтобы на зубах не было таких похожих на необмолоченные колоски наслоений, желательно чистить зубы почаще.

Тромб

Вспомните, как красиво выглядели здоровые красные кровяные тельца. А теперь посмотрите, какими они становятся в паутине смертельно опасного кровяного тромба. В самом центре находится белое кровяное тельце (лейкоцит).

Легочные альвеолы

Перед вами вид вашего легкого изнутри. Пустые полости — это альвеолы, где и происходит обмен кислорода на углекислый газ.

Раковые клетки легких

А теперь взгляните, как отличаются деформированные раком легкие от здоровых на предыдущем снимке.

Ворсинки тонкой кишки

Ворсинки тонкой кишки увеличивают ее площадь, что способствует лучшему усвоению пищи. Это выросты неправильной цилиндрической формы высотой до 1,2 миллиметра. Основу ворсинки составляет рыхлая соединительная ткань. В центре, подобно стержню, проходит широкий лимфатический капилляр, или млечный синус, а по сторонам от него располагаются кровеносные сосуды и капилляры. По млечному синусу в лимфу, а затем в кровь попадают жиры, а по кровеносным капиллярам ворсинок поступают в кровоток белки и углеводы. При внимательном рассмотрении можно заметить в бороздках пищевые остатки.

Человеческая яйцеклетка с корональными клетками

Здесь вы видите человеческую яйцеклетку. Яйцеклетка покрыта гликопротеиновой оболочкой (zona pellicuda), которая не только защищает ее, но и помогает захватить и удержать сперматозоид. К оболочке прикреплены две корональные клетки.

Сперматозоиды на поверхности яйцеклетки

На снимке схвачен момент, когда несколько сперматозоидов стараются оплодотворить яйцеклетку.

Человеческий эмбрион и сперматозоиды

Это похоже на войну миров, на самом же деле перед вами яйцеклетка через 5 дней после оплодотворения. Некоторые сперматозоиды все еще удерживаются на ее пов

Строение клетки крови человека под микроскопом. Кровь под микроскопом

Они имеют малые размеры, и рассмотреть их можно только под микроскопом.

Все клетки крови делятся на красные и белые. Первые – это эритроциты, составляющие большую часть всех клеток, вторые – лейкоциты.

К клеткам крови принято причислять и тромбоциты. Эти небольшие кровяные пластинки на самом деле не являются полноценными клетками. Они представляют собой мелкие фрагменты, отделившиеся от крупных клеток – мегакариоцитов.

Эритроциты

Эритроциты называются красными кровяными тельцами. Это самая многочисленная группа клеток. Они переносят кислород от органов дыхания к тканям и принимают участие в транспортировке углекислого газа от тканей к легким.

Место образование эритроцитов – красный костный мозг. Живут они 120 дней и разрушаются в селезенке и печени.

Образуются из клеток-предшественниц – эритробластов, которые перед превращением в эритроцит проходят разные стадии развития и несколько раз делятся. Таким образом, из эритробласта образуется до 64 красных кровяных клеток.

Эритроциты лишены ядра и по форме напоминают вогнутый с двух сторон диск, диаметр которого в среднем составляет около 7-7,5 мкм, а толщина по краям – 2,5 мкм. Такая форма способствует увеличению пластичности, необходимой для прохождения по мелким сосудам, и площади поверхности для диффузии газов. Старые эритроциты утрачивают пластичность, из-за чего задерживаются в мелких сосудах селезенки и там же разрушаются.

Большая часть эритроцитов (до 80 %) имеет двояковогнутую сферическую форму. Остальные 20 % могут иметь другую: овальную, чашеобразную, сферическую простую, серповидную и пр. Нарушение формы связано с различными заболеваниями (анемией, дефицитом витамина B 12 , фолиевой кислоты, железа и др.).

Большую часть цитоплазмы эритроцита занимает гемоглобин, состоящий из белка и гемового железа, которое придает крови красный цвет. Небелковая часть представляет собой четыре молекулы гема с атомом Fe в каждой. Именно благодаря гемоглобину эритроцит способен переносить кислород и выводить углекислый газ. В легких атом железа связывается с молекулой кислорода, гемоглобин превращается в оксигемоглобин, придающий крови алый цвет. В тканях гемоглобин отдает кислород и присоединяет углекислый газ, превращаясь в карбогемоглобин, в результате кровь становится темной. В легких углекислый газ отделяется от гемоглобина и выводится легкими наружу, а поступивший кислород вновь связывается с железом.

Кроме гемоглобина, в цитоплазме эритроцита содержатся различные ферменты (фосфатаза, холинэстеразы, карбоангидраза и др.).

Оболочка эритроцита имеет достаточно простое строение, по сравнению с оболочками других клеток. Она представляет собой эластичную тонкую сетку, что обеспечивает быстрый газообмен.

В крови здорового человека в небольших количествах могут быть недозрелые эритроциты, которые называются ретикулоцитами. Их количество увеличивается при значительной кровопотере, когда требуется возмещение красных клеток и костный мозг не успевает их производить, поэтому выпускает недозрелые, которые тем не менее способны выполнять функции эритроцитов по транспортировке кислорода.

Лейкоциты

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Нейтрофилы

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами. Из нейтрофилов и их остатков состоит гной. Лизосомные ферменты во время распада нейтрофилов высвобождаются и размягчают близлежащие ткани, формируя таким образом гнойный очаг.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными. Первые – это молодые клетки, вторые – зрелые. Клетки с сегментированным ядром составляют до 65 % от всех лейкоцитов, палочкоядерных в крови здорового человека – не более 5 %.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гр

Строение крови человека под микроскопом. Диагностика по крови: как это делается

Кровь — удивительное творение природы. Можно без преувеличения сказать, что она является источником жизни. Ведь именно через кровь мы получаем кислород и питательные вещества, именно с кровью уносятся из клеток« отходы производства». Любой недуг обязательно находит свое отражение в крови. На этом построен целый ряд диагностических методик. И шарлатанских тоже.

Алексей Водовозов

Кровь была одной из первых жидкостей, которую любознательные медики поместили под только что изобретенный микроскоп. С тех пор прошло более 300 лет, микроскопы стали намного совершеннее, но глаза врачей по‑прежнему смотрят на кровь в окуляры, выискивая признаки патологии.

На стекле

Антони ван Левенгук определенно получил бы несколько Нобелевских премий, живи он в наше время. Но в конце XVII века этой награды не было, поэтому Левенгук довольствуется всемирной известностью конструктора микроскопов и славой основателя научной микроскопии. Добившись в своих приборах 300-кратного увеличения, он сделал множество открытий, в том числе первым описал эритроциты.

Последователи Левенгука довели его детище до совершенства. Современные оптические микроскопы способны давать увеличение до 2000 раз и позволяют рассматривать прозрачные биологические объекты, включая клетки нашего организма.

Другой нидерландец — физик Фриц Цернике — в 1930-х годах заметил, что ускорение прохождения света по прямой делает изображение изучаемой модели более детальным, выделяя отдельные элементы на светлом фоне. Для создания интерференции в образце Цернике придумал систему колец, которые располагались как в объективе, так и в конденсаторе микроскопа. Если правильно настроить (юстировать) микроскоп, то волны, которые идут от источника света, будут попадать в глаз с определенным смещением по фазе. И это позволяет значительно улучшить изображение изучаемого объекта.


Метод получил название фазово-контрастной микроскопии и оказался настолько прогрессивным и перспективным для науки, что в 1953 году Цернике была присуждена Нобелевская премия по физике с формулировкой «За обоснование фазово-контрастного метода, особенно за изобретение фазово-контрастного микроскопа». Почему это открытие так высоко оценили? Раньше, чтобы рассмотреть под микроскопом ткани и микроорганизмы, их приходилось обрабатывать различными реактивами- фиксаторами и красителями. Живые клетки при таком раскладе увидеть не получалось, химикаты просто убивали их. Изобретение Цернике открыло в науке новое направление — прижизненное микроскопирование.

В XXI веке биологические и медицинские микроскопы стали цифровыми, способными работать в разных режимах — как в фазовом контрасте, так и в темном поле (изображение формируется светом, дифрагированным на объекте, и в результате объект выглядит очень светлым на темном фоне), а также в поляризованном свете, который нередко позволяет выявлять структуру объектов, лежащую за пределами обычного оптического разрешения.

Казалось бы, медикам нужно радоваться: в их руки попал мощнейший инструмент изучения тайн и загадок человеческого организма. Но этот высокотехнологичный метод очень заинтересовал не только серьезных ученых, но и шарлатанов и мошенников от медицины, которые посчитали фазово-контрастное и темнопольное микроскопирование очень удачным способом выуживания энных сумм денег у доверчивых граждан.

Жидкая ткань

Кровь относится к соединительным тканям. Да, как бы нелепо это не звучало на первый взгляд, она является ближайшим родственником послеоперационного рубца и двоюродной сестрой большеберцовой кости. Основной признак, характерный для таких тканей — малое количество клеток и большое содержание «наполнителя», который называется межуточным веществом. Клетки крови называются форменными элементами и делятся на три большие группы: Красные кровяные клетки (эритроциты). Самые многочисленные представители форменных элементов. Имеют форму двояковогнутого диска диаметром 6−9 мкм и толщиной от 1 (в центре) до 2,2 мкм (по краям). Являются переносчиками кислорода и углекислого газа, для чего содержат в себе гемоглобин. В одном литре крови найдется примерно 4−5 * 10 12 эритроцитов. Белые кровяные клетки (лейкоциты). Разнообразные по форме и функциям, но главное — именно они обеспечивают защиту организма от внешних и внутренних напастей (иммунитет). Размер от 7−8 мкм (лимфоциты) до 21 мкм в диаметре (макрофаги). По форме некоторые лейкоциты напоминают амеб и способны выходить за пределы кровяного русла. А лимфоциты похожи скорее на морскую мину, утыканную шипами рецепторов. В одном литре крови содержится примерно 6−8 * 10 9 лейкоцитов. Кровяные пластинки (тромбоциты). Это «осколки» гигантских клеток костного мозга, обеспечивающие свертывающую функцию крови. Форма их может быть разной, размер — от 2 до 5 мкм, то есть в норме — меньше любого другого форменного элемента. Количество — 150−400 * 10 9 на литр. Жидкая часть крови называется плазмой, на нее приходится примерно 55−60 процентов объема. В состав плазмы входят самые разнообразные органические и неорганические вещества и соединения: от ионов натрия и хлора до витаминов и гормонов. Из плазмы крови образуются все остальные жидкости организма.

Она живая и шевелится

У пациента, который решится пройти обследование методом «Диагностика по живой капле крови» (варианты названия — «Тестирование на темнопольном микроскопе» или «Гемосканирование»), берут каплю крови, не окрашивают, не фиксируют, наносят на предметное стекло и изучают, просматривая образец на экране монит

Конспект урока «Кровь» – конспект урока – Корпорация Российский учебник (издательство Дрофа – Вентана)

  • Интернет-магазин
  • Где купить
  • Контакты
  • Аудио
  • Новости
  • LECTA
  • Программа лояльности
Мой личный кабинет Корпорация Российский учебник Платформа LECTA Методическая помощь Вебинары Курсы Каталог Дошкольное образование Начальное образование Алгебра Английский язык Астрономия Биология Всеобщая история География Геометрия Естествознание ИЗО Информатика Искусство История России Итальянский язык Китайский язык Литература Литературное чтение Математика Музыка Немецкий язык ОБЖ Обществознание Окружающий мир ОРКСЭ, ОДНК Право Русский язык Технология Физика Физическая культура Французский язык Химия Черчение Шахматы Экология Экономика Финансовая грамотность Психология и педагогика Внеурочная деятельность Дошкольное образование Начальное образование Алгебра Английский язык Астрономия Биология Всеобщая история География Геометрия Естествознание ИЗО Информатика Искусство История России Итальянский язык Китайский язык Литература Литературное чтение Математика Музыка Немецкий язык ОБЖ Обществознание Окружающий мир ОРКСЭ, ОДНК Право Русский язык Технология Физика Физическая культура Французский язык Химия Черчение Шахматы Экология Экономика Корпорация Российский учебник Мой личный кабинет Методическая помощь Дошкольное образование Начальное образование Алгебра Английский язык Астрономия Биология Всеобщая история География Геометрия Естествознание ИЗО Информатика Искусство История России Итальянский язык Китайский язык Литература Литературное чтение Математика Музыка Немецкий язык ОБЖ Обществознание Окружающий мир ОРКСЭ, ОДНК Право Русский язык Технология Физика Физическая культура Французский язык Химия Черчение Шахматы Экология Экономика Психология и педагогика Внеурочная деятельность Вебинары Курсы Каталог Дошкольное образование Начальное образование Алгебра Английский язык Астрономия Биология Всеобщая история География Геометрия Естествознание ИЗО Информатика Искусство История России Итальянский язык Китайский язык Литература Литературное чтение Математика Музыка Немецкий язык ОБЖ Обществознание Окружающий мир ОРКСЭ, ОДНК Право Русский язык Технология Физика Физическая культура Французский язык Химия Черчение Шахматы Экология Экономика Интернет-магазин Где купить Контакты Аудио Новости LECTA Программа лояльности
  • Главная
  • Биология
  • Линия УМК В. В. Пасечника. Биология (5-9)
  • Разработки уроков (конспекты уроков)
  • 5 октября. Урок в школе

Кровь под микроскопом

Начиная с древнейших времён, кровь, поддерживающая жизнедеятельность человеческого организма, имела почти сакральное, мистическое значение.

Кровь под микроскопом — возможность изучить её строение и узнать что-то новое о самом себе и других живых существах. 

Всемирно известный изобретатель микроскопов, усовершенствованные версии которых широко используются в современном мире, Антони ван Левенгук, одно из первых своих исследований провёл именно над образцом крови, открыв для науки первые её клетки – эритроциты, названные им «кровяными шариками». Даже при максимально возможном для того времени трёхсоткратном увеличении, гениальный учёный сумел подробно описать их структуру и строение.

Совершенствование оптических систем и открытие фазово-контрастного метода имело колоссальное значение для возможности исследования живых клеток крови, в отличие от применяемых ранее методик с использованием химических реактивов, что приводило к гибели клеток.

Современные технологии, воплощённые в цифровых микроскопах, позволяют исследовать кровь не только с применением темнопольного и фазово-контрастного методов, но и с использованием поляризации, что делает возможным изучение ранее недоступных свойств и структурных особенностей строения клеток крови.

Исследование крови под микроскопом представляет интерес не только в сугубо научных целях. Благодаря широкой доступности приборов с высоким уровнем увеличения, стало возможным даже в домашних условиях близкое ознакомление с таким интереснейшим для науки объектом, как кровь, и рассмотреть её важнейшие элементы.

В составе крови под микроскопом чётко видны эритроциты, похожие на слегка сплющенные шарики, окрашенные в розоватый цвет. Основным функциональным назначением эритроцитов является снабжение человеческого организма кислородом и вывод отработанного углекислого газа, что осуществляется с помощью особого вещества белкового происхождения – гемоглобина. При наличии грибковых заболеваний, форма эритроцитов изменяется и становится угловатой или серповидной.

Лейкоциты, представляющие собой главную защитную систему организма, бывают нескольких видов — каждый вид отвечает за определённую сферу иммунной деятельности. Уничтожители чужеродных тел нейтрофилы представляют собой клетку с крупным многокомпонентным ядром, лимфоцитам же характерно крупное ядро, почти полностью занимающее клетку. Моноциты, в свою очередь, отличаются клеточным ядром, напоминающим по форме фасоль. Тромбоциты, по форме своей напоминающие пластинки, придают крови свойства свёртываемости и помогают остановить кровотечение.

В объективе микроскопа можно заметить не только основные компоненты крови, но и дополнительные вещества, свидетельствующие о наличии заболеваний или нарушении процессов жизнедеятельности. Например, повышенный сахар в крови будет заметен в виде кристаллических образований, холестерин напоминает хлопья с мягкими краями, а бактериальные или грибковые инфекции привлекут внимание неправильной формой и разнообразным строением, необычным для крови здорового человека.

Первым шагом к познанию одной из интереснейших областей науки – гематологии, может стать простой взгляд в объектив микроскопа с образцом капли крови.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *