Сердце функция: Сердце — Википедия – Сердце: строение, функции, болезни и их профилактика

Функция сердца

Сердечно-сосудистая система выполняет в организме ряд функций. Большинство из них направлено на оказание помощи другим физиологическим системам. Она должна взаимодействовать с каждой клеткой организма и немедленно реагировать на любое изменение условий внутренней среды, чтобы обеспечивать максимальную эффективность функционирования всех систем организма. Даже когда мы отдыхаем, сердечно-сосудистая система не прекращает работу, удовлетворяя потребности тканей тела.

Основные функции сердечно-сосудистой системы можно разделить на пять категорий:

        1. обменная;

        2. выделительная;

        3. транспортная;

        4. гомеостатическая;

        5. защитная.

Сердечнососудистая система обеспечивает доставку кислорода и питательных веществ каждой клетке организма и выведение из нее диоксида углерода и конечных продуктов обмена веществ. Она транспортирует гормоны из эндокринных желез к их целевым рецепторам. Эта система поддерживает температуру тела, поддерживает соответствующие уровни жидкости, предотвращая обезвоживание, а также помогает предотвратить инфекционные заболевания, вызванные проникающими в кровь микроорганизмами.

Функция сердца — ритмическое нагнетание крови из вен в артерии, т. е. создание давления, вследствие которого происходит её постоянное движение. Нагнетание крови обеспечивается посредством попеременного сокращения (систола) и расслабления (диастола) миокарда. Волокна сердечной мышцы сокращаются вследствие электрических импульсов (процессов возбуждения), образующихся в мембране (оболочке) клеток. Эти импульсы появляются ритмически в самом сердце.

  1. Проводящая система сердца

Сердечная мышца обладает уникальной способностью производить свой собственный электрический сигнал — позволяющий ей ритмично сокращаться без нервной стимуляции (автоматия сердца). Без нервной и гормональной стимуляции врожденная частота сердечных сокращений составляет в среднем 70 — 80 ударов (сокращений) в минуту. У тренированных людей этот показатель может быть ниже.

Проводящая система сердца состоит из четырех компонентов:

          1. синусоатриального (СА) узла;

          2. атриовентрикулярного (АВ) узла;

          3. пучка Гиса;

          4. волокон Пуркинье.

Импульс сердечного сокращения возникает (инициируется) в СА-узле — группе особых волокон сердечной мышцы, расположенных в задней стенке правого предсердия. Поскольку эта ткань генерирует импульс обычно с частотой 60 — 80 ударов/мин, СА-узел называют водителем ритма сердца (пейсмейкером), а устанавливаемую им частоту сокращений сердца — синусовым ритмом. Электрический импульс, произведенный СА-узлом, проходит через оба предсердия и достигает АВ-узла, расположенного вблизи перегородки правого предсердия возле центра сердца. Когда импульс распространяется по предсердиям, они получают сигнал сокращения и моментально его осуществляют.

АВ-узел проводит импульс из предсердий в желудочки. Импульс, проходя через АВ-узел, запаздывает на 0,13 с и затем поступает в пучок Гиса. Эта задержка позволяет предсердиям полностью сократиться, прежде чем это сделают желудочки, обеспечивая их максимальное наполнение. Пучок Гиса простирается вдоль межжелудочковой перегородки. Правое и левое ответвления пучка заходят в оба желудочка. Они посылают импульс к верхушке сердца. Каждое ответвление пучка Гиса подразделяется на множество мелких веточек, которые простираются по всей перегородке желудочка. Эти терминальные ответвления пучка Гиса называются волокнами Пуркинье. Они проводят импульс возбуждения через желудочки почти в шесть раз быстрее, чем остальные участки проводящей системы сердца. Такая быстрая проводимость позволяет всем частям желудочков сокращаться почти одновременно.

  1. Внесердечная регуляция деятельности сердца

Хотя сердце генерирует собственные электрические импульсы, их влияние и хронометраж могут измениться. В нормальных условиях это осуществляется в основном благодаря трем системам:

            1. парасимпатической нервной системе. (Как правило, ослабляют силу и замедляют ритм сердечных сокращений, понижают возбудимость и проводимость сердечной мышцы)

            2. Симпатической нервной системе. (Всегда стимулируют работу сердца).

3) Эндокринной системе. Эта система оказывает воздействие посредством гормонов, выделяемых мозговым веществом надпочечников — норадреналина и адреналина. Подобно симпатической нервной системе, они стимулируют сердце, повышая ЧСС. Вообще выделение этих гормонов «запускается» симпатической стимуляцией в периоды стресса.

16. Строение сердца. Сократительная функция сердца

Сердце расположено в грудной полости, оно на 2/3 смещено в левую сторону. Его продольная ось наклонена к вертикальной оси тела под углом 40 градусов. Границы сердца: верхушка находится в пятом левом межреберном промежутке, верхняя граница идет на уровне хряща третьего правого ребра. Средние размеры сердца взрослого человека: длина около 12 — 13 см, наибольший поперечник — 9 -10,5 см. Вес сердца мужчины равен в среднем 300г (1/215 часть массы тела), женщины — 250г (1/250 часть массы тела). Масса сердца новорожденного достигает 0,89% массы тела, взрослого — 0,48 — 0,52%. Наиболее быстро сердце растет в первый год жизни и в период полового созревания.

Сердце имеет форму конуса, уплощенного в переднезаднем направлении. В нем различают верхушку и основание. Верхушка — заостренная часть сердца, направлена вниз и влево и немного вперед. Основание — расширенная часть сердца, обращено вверх и вправо и немного назад. На поверхности сердца хорошо видна венечная борозда, которая идет поперечно к продольной оси сердца. Эта борозда внешне указывает на границу между предсердиями и желудочками.

Сердце — это полый мышечный орган. Полость сердца подразделяется на четыре камеры: два предсердия (правое и левое) и два желудочка (правый и левый). Правое предсердие и правый желудочек вместе составляет правое, или венозное сердце, левое предсердие и левый желудочек вместе составляют левое, или артериальное сердце. Правая и левая половины сердца полностью разделены межжелудочковой перегородкой.

Стенка сердца состоит из трех слоев: внутреннего — эндокарда, среднего — миокарда и наружного — эпикарда.

Эндокард выстилает изнутри поверхность камер сердца, он образован особым видом эпителиальной ткани — эндотелием. Эндотелий имеет очень гладкую, блестящую поверхность, что обеспечивает уменьшение трения при движении крови в сердце.

Миокард составляет основную массу стенки сердца. Он образован поперечно-полосатой сердечной мышечной тканью, волокна которой в свою очередь располагаются в несколько слоев. Миокард предсердий значительно тоньше, чем миокард желудочков. Миокард левого желудочка в три раза толще, чем миокард правого желудочка. Степень развитости миокарда зависит от величины работы, которую выполняют камеры сердца. Миокард предсердий и желудочков разделен слоем соединительной ткани (фиброзное кольцо), что дает возможность поочередного сокращения предсердий и желудочков.

Эпикард — это особая серозная оболочка сердца, образованная соединительной и эпителиальной тканью.

Околосердечная сумка (перикард) — это своеобразный замкнутый мешок, в который заключено сердце. Сумка состоит из двух листков. Внутренний листок срастается по всей поверхности с эпикардом. Наружный листок как бы покрывает сверху внутренний листок. Между внутренним и наружным листком имеется щелевидная полость — перикардиальная полость, заполненная жидкостью. Сама сумка и жидкость, находящаяся в ней, выполняют защитную роль и уменьшают трение сердца при его работе. Сумка способствует фиксации сердца в определенном положении.

Работа клапанов сердца обеспечивает одностороннее движение крови в сердце.

К собственно сердечным клапанам относятся створчатые клапаны, располагающиеся на границе предсердий и желудочков. В правой половине сердца находится техстворчатый клапан, в левой — двустворчатый (митральный). Створчатый клапан состоит из трех элементов: 1) створки, имеющей форму купола, и образованной плотной соединительной тканью, 2) сосочковой мышцы, 3) сухожильных нитей, натянутых между створкой и сосочковой мышцей. При сокращении желудочков створчатые клапаны закрывают просвет между предсердием и желудочком. Механизм работы этих клапанов следующий: при повышении давления в желудочках кровь устремляется в предсердия, поднимая створки клапанов, и они смыкаются, перерывая просвет между предсердием и желудочком; створки не выворачиваются в сторону предсердий, т.к. их удерживают сухожильные нити, натягивающиеся за счет сокращения сосочковой мышцы.

На границе желудочков и сосудов, отходящих от них (аорта и легочный ствол), располагаются полулунные клапаны, состоящие из полулунных заслонок. В названных сосудах по три таких заслонки. Каждая полулунная заслонка имеет форму тонкостенного кармашка, вход в который открыт в сторону сосуда. Когда кровь изгоняется из желудочков, полулунные клапаны прижаты к стенкам сосуда. Во время расслабления желудочков кровь устремляется в обратном направлении, наполняет «кармашки», они отходят от стенок сосуда и смыкаются, перекрывая просвет сосуда, не пропуская кровь в желудочки. Полулунный клапан, располагающийся на границе правого желудочка и легочного ствола, называется пульмональный клапан, на границе левого желудочка и аорты — аортальный клапан.

Функция сердца состоит в том, что миокард сердца во время сокращения перекачивает кровь из венозного в артериальное сосудистое русло. Источником энергии, необходимой для движения крови по сосудам является работа сердца. Энергия сокращения миокарда сердца преобразуется в давление, сообщаемое порции крови, выталкиваемой из сердца во время сокращения желудочков. Давление крови — это сила, которая расходуется на преодоление силы трения крови о стенки сосудов. Разность давлений в разных участках сосудистого русла — главная причина движения крови. Движение крови в сердечно-сосудистой системе в одном направлении обеспечивается работой сердечных и сосудистых клапанов.

Свойства сердечной мышцы

К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость и сократимость.

Автоматия — это способность к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Ярким проявлением этого свойства сердца является способность извлеченного из организма сердца при создании необходимых условий сокращаться в течение часов и даже суток. Природа автоматии до сих пор до конца не выяснена. Но однозначно ясно, что возникновение импульсов связано с деятельностью атипических мышечных волокон, заложенных в некоторых участках миокарда. Внутри атипических мышечных клеток спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусный, или синоатриальныйузел. В атипических волокнах этого узла спонтанно возникают импульсы с частотой 60-80 раз в минуту. Он является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковый, или атриовентрикулярный узел. Третий участок — это атипические волокна, составляющие пучок Гиса, лежащий в межжелудочковой перегородке. От пучка Гиса берут начало тонкие волокна атипической ткани — волокна Пуркинье, ветвящиеся в миокарде желудочков. Все участки атипической ткани способны генерировать импульсы, но их частота самая высокая в синусном узле, поэтому его называют водителем ритма первого порядка (пейсмекером первого порядка), и все другие центры автоматии подчиняются этому ритму.

Совокупность всех уровней атипической мышечной ткани составляют проводящую систему сердца. Благодаря проводящей системе волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду.

Возбудимость сердечной мышцы заключается в том, что под действием различных раздражителей (химических, механических, электрических и др.) сердце способно приходить в состояние возбуждения. В основе процесса возбуждения лежит появление отрицательного электрического потенциала на наружной поверхности мембран клеток, подвергшихся действию раздражителя. Как и в любой возбудимой ткани, мембрана мышечных клеток (миоцитов) поляризована. В покое она снаружи заряжена положительно, изнутри — отрицательно. Разность потенциалов определяется различной концентрацией ионов N а + и К + по обе стороны мембраны. Действие раздражителя увеличивает проницаемость мембраны для ионов К + и Nа + , происходит перестройка мембранного потенциала(калий — натриевый насос), в результате возникает потенциал действия, распространяющийся и на другие клетки. Таким образом происходит распространение возбуждения по всему сердцу.

Импульсы, возникшие в синусном узле, распространяются по мускулатуре предсердий. Дойдя до атриовентрикулярного узла, волна возбуждения распространяется по пучку Гиса, а затем по волокнам Пуркинье. Благодаря проводящей системе сердца наблюдается последовательное сокращение частей сердца: сначала сокращаются предсердия, затем желудочки (начиная с верхушки сердца волна сокращения распространяется к их основанию). Особенность атриовентрикулярного узла — проведение волны возбуждения только в одном направлении: от предсердий к желудочкам.

Сократимость — это способность миокарда сокращаться. Оно основано на способности самих клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы определяет способность сердца выполнять механическую работу. Работа сердечной мышцы подчиняется закону «все или ничего».Суть этого закона состоит в следующем: если на сердечную мышцу наносить раздражающее действие различной силы, мышца отвечает каждый раз максимальным сокращением («все»). Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением («ничего»).

6. Эндокринная функция сердца.

В миоцитах предсердий образуется натрийуретический гормон под воздействием растяжения, уровня Na+ в крови, вазопрессина, поступающих импульсов. Он повышает выделение почками Na+ и Cl, клубочковую фильтрацию, понижает секрецию ренина, эффект влияния ангиотензина II, альдостерона. Расслабляет гладкие миоциты мелких сосудов, что способствует понижению АД.

ФИЗИОЛОГИЯ СОСУДИСТОЙ СИСТЕМЫ

Лекция 3

Тема: Основные законы гемодинамики. Кровяное давление.

Артериальный пульс.

План:

1. Основные законы гемодинамики.

2. Объемная и линейная скорости кровотока в различных отделах кровяного русла.

3. Факторы, обусловливающие движение крови по сосудам высокого давления.

4. Кровяное давление, его виды и факторы его определяющие. Методы измерения.

5. Морфологическая и функциональная классификация сосудов.

6. Артериальный пульс, его происхождение и характеристика.

1. Основные законы гемодинамики.

Наука изучающая движение крови по сосудам получила название гемодинамики. Ее законы общие с гидродинамикой (учении о движении жидкостей). Согласно закону гидродинамики ток жидкости по сосудам определяется двумя силами:

1. Давлением (Р) под которым она движется, т.е. разностью давлений в начале и конце трубы. Эта сила способствующая движению.

2. Сопротивлением (R), которое вследствие вязкости, трения о стенки сосуда и вихревых движений испытывает жидкость. Сопротивление препятствует движению.

Отношение разности давления к сопротивлению определяет объемную скорость тока жидкости.

Периферическое сопротивление складывается из сопротивления каждого сосуда. В состоянии покоя открыта лишь небольшая часть капилляров. Большое количество из них включено в кровоток параллельно. Поэтому суммарное сопротивление капилляров будет значительно меньше, чем в артериях. Определяет сопротивление вязкость крови, но она непостоянна в разных участках сосудистого русла. Чем меньше диаметр сосуда, тем меньше вязкость. Основными сосудами сопротивления (резистивными) являются артерии и артериолы. Они имеют малый диаметр (15-70 мкм), толстый слой кольцевой гладкой мускулатуры, сокращаясь, может значительно уменьшать диаметр и повышать сопротивление кровотоку. При этом АД в них повышается. Снижение тонуса артериол способствует оттоку крови из артерий и понижению в них АД. Следовательно, изменение диаметра артериол есть главный регулятор уровня общего АД. В работающих органах тонус стенок артериол понижается, кровоснабжение улучшается. В неработающих — наоборот. Это поддерживает необходимый уровень АД.

Сердце, проталкивая кровь в сосуды, создает в них давление, необходимое для кровотока. Давление определяет скорость кровотока и способствует преодолению сопротивления. В крупных и средних артериях давление снижается всего на 10%. В артериолах и капиллярах на 85%.

Важным условием для нормальной циркуляции крови является ее соотношение в артериях и венах:

в артериях содержится 27% крови,

в венах — 73%.

Основными показателями гемодинамики являются:

1. Объемная скорость кровотока.

2. Линейная скорость (скорость кругооборота крови).

3. Давление в разных участках сосудистого русла.

Лекция 11 Физиология сердца.

Анатомия и эволюция системы кровообращения известны из курсов зоологии и анатомии человека.

Сердце у человека имеет массу около 220-350 г у мужчин и 180-280 г у женщин, составляя 0,5% массы тела. Потребляет же около 5% минутного кровотока. На 100 г ткани в покое по венечным сосудам проходит 80-90 мл крови в минуту. У млекопитающих миокард получает кровь по двум венечным артериям, правой и левой, устья которых расположены в корне аорты. Капиллярная сеть в сердце очень густая, число капилляров приближается к количеству кардиомиоцитов. Венозный синус, собирающий кровь из дренажной системы, сбрасывает ее непосредственно в правое предсердие (2/3 всего количества). Остальные 1/3 кровотока покидает сердце по передним сердечным венам. При интенсивной мышечной работе кровоток в сердце возрастает в 4-5 раз, хотя в ходе сердечного цикла меняется из-за механического сдавления сосудов. Имеются особенности в обеспечении миокарда энергией. Главный метаболический путь в клетках миокарда аэробный, окислительное фосфориллирование. Никакого кислородного долга миокард не выносит. Потребление кислорода сердечной мышцей очень высокое 8-10 мл/100 г ткани в минуту. Основные субстраты для окислительного фосфориллирования в миокарде свободные жирные кислоты (34%), глюкоза (31%), и лактат (28%) в покое. При физической нагрузке доля молочной кислоты возрастает до 60%, что целесообразно с точки зрения утилизации этого субстрата, накапливающегося в нагруженных мышцах. Сердце направленно нагнетает кровь в сосудистую систему из-за периодических сокращений и работы клапанного аппарата. Каждый сердечный цикл состоит из двух основных периодов систолы и диастолы. При этих состояниях изменяется давление в полостях сердца и выходящих их него сосудов аорты и легочной артерии.

Началом цикла сердечного сокращения принято считать систолу предсердий, продолжающуюся до 0,1 с. После ее окончания наблюдается систола желудочков, общая длительность которой составляет 0,33 с. Период систолы желудочков складывается из времени общего напряжения (0,08 с) и периода изгнания (0,25 с). Диастола желудочков состоит из периода изометрического расслабления и периода наполнения. Весь цикл при частоте сердечных сокращений 75 уд/мин продолжается 0,8 с. До 40% времени кардиомиоциты сокращены, 60%- расслаблены.

Во время систолы предсердий внутриполостное давление в них увеличивается до 6-8 мм рт.ст., что приводит к изгнанию крови в полость желудочков (устья полых вен пережаты сокращением миоцитов предсердий).

Во время систолы желудочков, в период напряжения, давление в их полости постепенно повышается, и когда оно превосходит давление в предсердиях – атриовентрикулярные клапаны закрываются. Поскольку полулунные клапаны в этот момент еще не открыты, пространство в желудочках оказывается замкнутым. Давление в них по мере продолжения изометрического сокращения стремительно увеличивается, и когда оно превосходит давление в аорте периода диастолы (80 мм рт.ст.) и давление в легочной артерии 20 мм рт.ст., происходит открытие полулунных клапанов. Начинается изгнание крови, нарастает давление в левом желудочке до 120 мм рт.ст., в правом до 30 мм рт.ст., до тех пор, пока не наступит диастола, давление в желудочках не упадет, и не закроются полулунные сосудистые клапаны.

Основные функциональные показатели работы сердца.

В покое, во время диастолы, желудочки могут принять до 120-130 мл крови. Объем крови, содержащийся в конце диастолы, называется конечно-диастолическим объемом. Во время систолы при относительном покое организма в аорту выбрасывается около 70 мл крови. Оставшиеся в сердце 50-60 мл крови составляют конечно-систолический объем. При физической нагрузке конечный систолический объем может уменьшаться до 10-30 мл.

Систолический объем – СО – количество крови, выбрасываемой каждым желудочком за одно сокращение. Синоним – ударный объем. Разность между конечно-диастолическим и конечно-систолическим объемами.

Минутный объем – МОК– сердечный выброс – количество крови, выбрасываемое желудочками сердца в минуту. Это интегральный показатель работы сердца, зависит от систолического объема и частоты сердечных сокращений: МОК=СО×ЧСС

МОК у мужчин приближается к 4-5,5, а у женщин к 3-4,5 л/мин

В положении стоя МОК на треть меньше, чем лежа, кровь скапливается в нижней части тела и уменьшается систолический объем.

Частота сердечных сокращений – один из информативных показателей работы сердца. В онтогенезе ЧСС покоя снижается от 100-110 до 70 уд/мин, затем к пожилому возрасту вновь возрастает на 7-8 уд/мин.

У мелких животных ЧСС может достигать 500 уд/мин, что связано с интенсивным обменом и процессами терморегуляции.

Общий объем крови, находящейся в сосудах, называется объемом циркулирующей крови. Этот показатель влияет на возврат крови в сердце. У взрослого человека около 84 % всей крови находится в большом круге кровообращения, 9% в малом, 7% в сосудах и полостях сердца. 60-70% всей крови постоянно содержится в венах.

Физиология сердечной мышцы.

Функциональной единицей миокарда является мышечное волокно, образованное цепочкой нескольких кардиомиоцитов. Между ними имеются электрические синапсы, контакты, имеющие малое сопротивление.

Среди клеток миокарда выделяют большинство рабочих, сократительных, или типичных кардиомиоцитов, и меньшинство (около 1%) атипичных, узловых кардиомиоцитов, составляющих проводящую систему сердца.

К основным свойствам сердечной мышцы относятся

–автоматизм

– проводимость

– возбудимость

–сократимость

Автоматизм миокарда. Способность к ритмическим сокращениям без внешних стимулов является характерным свойством сердца. Причиной автоматических сокращений миокарда является генерация импульсов пейсмекерными клетками.

Подробное описание проводящей системы сердца можно найти в руководствах по физиологии или клинической кардиологии. В общем курсе рассматривается ее упрощенное строение.

Проводящая система сердца включает узлы и пучки:

1.Синоатриальный узел

2.Атриовентрикулярный узел

3.Пучок Гиса

4.Волокна Пуркинье.

В проводящей системе сердца и локализованы водители ритма. Не все клетки проводящей системы способны быть водителями ритма. Только небольшая часть (3,5%) из всей массы синусного узла способна генерировать спонтанные колебания потенциала, их называют истинными пейсмекарами, в отличие от латентных, потенциальных. Истинные пейсмекеры способны к спонтанной деполяризации. Пейсмекерный потенциал обусловлен медленной диастолической деполяризацией, феноменом, характерным только для атипичных кардиомиоцитов. Пейсмекарами могут быть клетки и других узлов и проводящих элементов миокарда, если не функционирует синусный узел. Для этих клеток нет понятия потенциал покоя. Мембранный потенциал их постоянно, ритмически правильно, флуктуирует приводя к периодическому открытию и закрытию потенциалчувствительных ионных каналов.

По современным представлениям (А.Д.Ноздрачев, 2005) в генерации возбуждения пейсмекерной клеткой можно выделить три фазы.

1.Начальная, фаза спонтанной диастолической деполяризации. Обусловлена снижением калиевой проницаемости (уменьшением выходящего калиевого тока, выносящего положительный заряд из клетки) на фоне действия натриевой утечки, также понижающего электроотрицательность цитоплазмы. Деполяризация развивается плавно до тех пор, пока не достигнет порога срабатывания Т-каналов.

2.Вторая фаза начинается открытием потенциалзависимых кальциевых Т-каналов. Т-каналы выступают как триггеры инициации потенциала действия. Поскольку порог потенциалзависимых кальциевых каналов в проводящих кардиомиоцитах невелик, при достижении КУД, близкого к –35 мВ, начинается они начинают открываться.

3.Генерация потенциала действия. Основной вклад в его развитие вносят кальциевые потенциалзависимые каналы L-типа. Реполяризация обусловлена функционированием калиевых каналов.

Таким образом, пейсмекерный потенциал обусловлен медленной диастолической деполяризацией, местным, нераспространяющимся возбуждением. Механизм, задающий ритм спонтанных колебаний мембранного потенциала, не установлен, хотя известно, что он связан с внутриклеточными процессами в пейсмекерных клетках, возможно, связанных с работой кальциевых ионных насосов. Полагают, что спонтанный внутриклеточный ритм может быть близким к 3 Гц.

Проводимость. По проводящей системе сердца возбуждение распространяется в 5 раз быстрее, чем по рабочим кардиомиоцитам, и охватывает практически весь миокард. Однако, вначале ритм сердечных сокращений формируется в синусном узле, а далее, после задержки в атриовентрикулярном узле, переходит по пучку Гиса и волокнам Пуркинье ко всем синцитиально объединенным рабочим миокардиоцитам. Имеется иерархия участков атипичных кардиомиоцитов, ведущим узлом в генерации ритма сердца является синусный, когда он функционирует нормально, другие выполняют только проводниковые функции. Передача возбуждения на другие проводящие, а затем и рабочие кардиомиоциты осуществляется путем распространения потенциала действия без затухания (декремента). Возможность для этого обеспечивается наличием нексусов, расположенных на поверхности кардиомиоцитов.

Постоянная длины для кардиомиоцитов λ равна от 65 поперек и 130 мкм вдоль волокна. Постоянная времени (τ=RC) приближается к 4,4 мс. Вспомним, что первая величина определяет то расстояние, на которое первоначальный потенциал уменьшается в e раз, вторая – показывает, за какой отрезок времени потенциал уменьшается в 1/e раз. Поскольку емкость мембраны волокон Пуркинье выше, чем у рабочих кардиомиоцитов, и учитывая то, что сопротивление мембраны во время деполяризации резко падает, можно понять, что постоянная времени за один сердечный цикл может меняться в широких пределах. Скорость передачи возбуждения в сердце различается от 5 м/с в проводящей системе до 0,5 м/с в рабочих клетках.

Возбудимость.

Под действием различных раздражителей электрических, химических, температурных, сердце способно возбуждаться. Как и всякая возбудимая клетка, рабочий кардиомиоцит имеет поляризованную мембрану. В покоя, в фазу диастолы, для мембраны кардиомиоцита характерен потенциал покоя, обусловленный теми же причинами, что и у любой возбудимой клетки. Мембранный потенциал покоя близок к равновесному потенциалу для К+ и соответствует минус 60-80 мВ. При возбуждении в мембране (сарколемме) открываются первыми потенциалзависимые натриевые каналы, входящий ток смещает МП до КУД (КУД натриевых каналов= 55 мВ) и развивается ПД. Передний фронт ПД в рабочем кардиомиоците нарастает очень круто. Далее начинается особенно характерная для рассматриваемых клеток фаза реполяризации, состоящая из двух периодов. Вслед за началом реполяризации, обусловленной выходом из клетки ионов калия, наступает плавное длительное (350 мс) удержание мембранного потенциала на значении, близком к максимальному, регистрируемому при ПД. Эта фаза плато обеспечивается проникновением в клетку Са++ по потенциалзависимым кальциевым каналам, КУД которых близок к минус 35мВ, на фоне работы калиевых. Потенциалзависимые кальциевые каналы имеют, по аналогии с натриевыми, легкие (d) и тяжелые (f) ворота, обеспечивающие ионную проводимость. Последовательность событий складывается из открытия активационных d– и последующего закрытия инактивационных f–ворот кальциевых каналов; они очень инерционны и фаза «плато» поэтому продолжается до 350 мс. После этого калиевые каналы, открывшиеся еще при деполяризации мембраны, наконец восстанавливают потенциал мембраны на уровне ПП, за счет выхода из клеток ионов калия по градиенту концентрации. Электрическая стимуляция ткани сердца приводит к развитию возбуждения по тем же механизмам, что и при спонтанных процессах. Поэтому электрическое раздражение рассматривается как адекватное для миокарда, и в практике применяются электростимуляторы, в том числе имплантированные кардиостимуляторы.

При нанесении раздражения на участки сердечной мышцы в разные периоды сердечного цикла можно убедиться в том, что для нее характерны абсолютная и относительная рефрактерность. Поскольку рабочие кардиомиоциты имеют длительность ПД около 300 мс, значит, чаще чем 3 раз в 1 с сердце сократится не сможет. Но длительный рефрактерный период приводит к тому, что в любом случае сердце сокращается целиком. Отдельные участки сердечной мышцы способны сокращаться чаще, но это уже выходит за рамки физиологии.

Сократимость. Сердечной мышце свойственна сократимость, в основе ее лежит обычный механизм мышечного сокращения.

Электромеханическое сопряжение в кардиомиоцитах принципиально напоминает этот процесс в скелетных мышцах. Для сердечных сократительных белков актина и миозина свойственны те же взаимодействия, так же важен кальций и АТФ.

Электрокардиограмма

В результате того, что кардиомиоциты проходят все стадии возбуждения синхронно, возникает значительный потенциал, достигающий кожной поверхности тела. Поэтому если на теле расположить электроды, можно прибором с небольшим усилением зафиксировать электрокардиограмму.

Электрокардиография, – современный высокоинформативный метод оценки сердечной деятельности, основанный на регистрации электрических процессов. Он позволяет оценивать многие отклонения в деятельности сердца и диагностировать многие заболевания, например, ишемические.

В электрокардиограмме (ЭКГ) различают зубцы и интервалы.

Зубец Р, первый компонент ЭКГ, свидетельствует о том, что процесс деполяризации предсердий завершен, импульс инициируется синусным узлом. Критерий нормального синусного ритма. Имеет в норме А не более 0,25 мВ, длителдьность 0,1 с.

Интервал РQ. Отражает время от начала деполяризации предсердий до начала деполяризации желудочков, время прохождения импульса от сиоатриального узла до ножек пучка Гиса. 0,12-0,2 с длительность.

Комплекс QRS.Период деполяризации желудочков. Продолжительность 0,1 с. Зубец R самый большой в ЭКГ.

Сегмент ST. Окончание деполяризации желудочков и начало их реполяризации. Если амплитуда превышает 0,1 мВ, у пациента можно подозревать ишемическую болезнь. На пике Т находится точка относительной рефрактерности желудочков.

Интервал QT. Продолжительность 0,36-0,44 с. Полный цикл деполяризации и деполяризации желудочков. Удлинение может указывать на ишемию миокарда.

Регуляция сердечной деятельности.

Осуществляется местными (миогенными и интрамуральными нервными), гуморальными и системными (экстракардиальными) нервными механизмами.

Местные механизмы. Закон Френка-Старлинга, или закон сердца постулирует, что в определенных пределах, чем сильнее наполняется кровью сердце во время диастолы, тем сильнее оно сокращается во время систолы. В законе сердца находит проявление гетерометрическая саморегуляция миокарда, то есть изменение силы сокращения миокардиальных волокон при увеличении их длины.

Отражением гомеометрической саморегуляции является феномен Боудича (чем выше ЧСС, тем выше сила отдельного сокращения) и эффект Анрепа (увеличение силы сокращения при повышении давления в аорте).

В сердце реализуются периферические рефлексы, поскольку между слоями миоцитов имеются афферентные, эжжферентные и вставочные нейроны. Местный рефлекс с правого предсердия на левый желудочек усиливает его сокращения при усиленной мышечной работе.

Внешняя (экстракардиальная) нервная регуляция осуществляется симпатической и парасимпатической нервной системой.

Симпатический и парасимпатический отделы автономной нервной системы оказывают на сердце противоположные влияния.

Вагусные влияния заключаются в отрицательном хронотропном, инотропном, батмотропном, дромотропном эффектах. Медиатор –ацетилхолин. Действие опосредуется мускариновыми метаботропными холинорецепторами, активация которых через G-белки приводит к увеличению выходящего калиевого тока через ионные калиевые каналы. Рост электроотрицательности в клетках-пейсмекарах тормозит их активность.

Симпатические влияния могут быть определены как положительный хронотропный, инотропный, батмотропный, дромотропный эффекты.

Гормональная регуляция.

Гуморальная регуляция функций моиокарда осуществляется физиологически активными веществами, выделяющимися в кровь из эндокринных желез, а также ионным составом интерстиция. Повышение в тканевой жидкости содержания ионов калия тормозит деятельность сердца. Увеличение в среде концентрации ионов Са++, наоборот, увеличивает амплитуду и частоту сердечных сокращений.

Гормоны адреналин и тироксин стимулируют работу сердца.

Действие катехоламинов (адреналина и норадреналина) зависит от наличия в клетках-мишенях адренорецепторов. В сердце млекопитающих содержатся преимущественно β1 адренорецепторы, в то время как в гладких мышцах сосудов преобладают β2 . Неравномерно распределены в сердце и сосудах α-адренорецепторы. Результирующее действие катехоламинов на сердце стимулирующее силу и частоту сокращений.

Эндокринная функция сердца.

Известно, что мышечные клетки предсердий синтезируют и секретируют в кровоток гормон предсердный натрийуретический пептид. Его выделение стимулируется растяжением предсердий, или изменениями содержания вазопрессина. Спектр действия пептида широк, он повышает экскрецию натрия почками (и сопряженно с ним, хлора), подавляя реабсорбцию его в нефронах. Гормон расслабляет гладкие мышцы сосудов, снижая АД.

«Нагнетательная функция сердца. Фазовый анализ сердечного цикла. Явления, сопровождающие работу сердца»

Методическая разработка лекции

Вопросы лекции:

  1. Нагнетательная функция сердца. Роль клапанного аппарата в ее реализации.

  2. Закон Франка-Старлинга (закон «сердца»). Причины наполнения сердца кровью.

  3. Фазовый анализ сердечного цикла.

  4. Звуковые и механические явления, сопровождающие работу сердца (тоны сердца, верхушечный толчок), их диагностическое значение.

    1. Нагнетательная функция сердца. Роль клапанного аппарата в ее реализации.

Сердце нагнетает кровь в сосудистую систему благодаря синхронному сокращению миокарда предсердий и желудочков.

Сокращение обоих предсердий, а затем обоих желудочков происходит одновременно вследствие:

  1. наличия общих слоев миокарда у обоих предсердий и обоих желудочков;

  2. одновременного возбуждения клеток миокарда обоих предсердий и обоих желудочков, что достигается работой проводящей системы сердца.

Работа сердца как целого органа начинается с сокращения миокарда предсердий (систола), расслабление которого (диастола) происходит на фоне систолы желудочков и последующей их диастолы. Совокупность систолы и диастолы предсердий, систолы и диастолы желудочков называется сердечным циклом. Именно сердечный цикл является той временной структурой, которая обеспечивает нагнетательную функцию сердца.

Общая характеристика нагнетательной функции сердца.

Сокращение желудочков начинается в области устьев полых вен, вследствие чего устья сжимаются. Поэтому кровь может двигаться только в одном направлении – в желудочки через предсердно-желудочковые отверстия. В этих отверстиях расположены атриовентрикулярные клапаны: в левом желудочке находится двустворчатый (бикуспедальный) митральный клапан, в правом – трехстворчатый. В момент диастолы и последующей систолы предсердий створки клапанов расходятся и пропускают кровь из предсердий в желудочки.

При сокращении желудочков кровь устремляется в сторону предсердий и захлопывает створки атриовентрикулярных клапанов. Открыванию створок клапанов в сторону предсердий препятствуют сухожильные нити, при помощи которых края створок прикрепляются к сосочковым мышцам. Они представляют собой пальцеобразные выросты внутреннего мышечного слоя стенки желудочков. Являясь частью миокарда желудочков, сосочковые мышцы сокращаются вместе с ними, натягивая сухожильные нити, которые удерживают створки клапанов.

Повышение давления в желудочках не только закрывает створчатые клапаны, но и обеспечивает открытие полулунных клапанов, которые расположены в устьях аорты и легочного ствола. Каждый из них состоит из трех лепестков, прикрепленных наподобие накладных карманов к внутренней поверхности указанных артериальных сосудов. Во время систолы желудочков выбрасываемая ими кровь прижимает эти лепестки к краям аорты и легочной артерии, что обеспечивает изгнание крови только в артериальные сосуды: из правого желудочка – в легочную артерию, из левого – в аорту. Во время диастолы желудочков в результате наличия разности давлений в указанных артериях и полостях желудочков кровь устремляется обратно в полости последних, наполняет лепестки полулунных клапанов и захлопывает их. Эти клапаны могут выдержать большое давление и не пропускают кровь из аорты и легочной артерии в желудочки.

Во время диастолы предсердий и желудочков кровь притекает из вен в предсердия и далее через атриовентрикулярные отверстия – в желудочки, происходит наполнение сердца кровью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *