Расшифровка пэт: Полиэтилентерефталат — Википедия – ПЭТ — Википедия

Содержание

Свойства и применение полиэтилентерефталат ПЭТ

ПЭТ (или ПЭТФ, полиэтилентерефталат) – это термопластичный полимер, являющийся самым распространенным среди полиэфиров. ПЭТ материал обладает прозрачностью, высокой прочностью, хорошей пластичностью (причем в нагретом состоянии, и в холодном), химической стойкостью. Данный материал поддается обработке сверлением, пилением, фрезерованием. Все свои характеристики ПЭТ материал сохраняет и при низких температурах, до -40, и при высоких, до +75 градусов.

Полиэтилентерефталат – ПЭТ, ПЭТФ (PET, валокс, ULTRADUR, CELANEX, RYNITE) — это линейный термопластичный полиэфир, который имеет широкое коммерческое применение в виде синтетического волокна, а также в виде пленок и изделий, изготавливаемых из ПЭТ-материала экструзией и литьем под давлением.

 Основные типы сложных полиэфиров или аналогов ПЭТ материала

  • PBT — Полибутилентерефталат (ПБТ)

Свойства: Кристаллический, Тс = 45 — 60 оС, Tпл = 190 — 250 оС

  • PC — Поликарбонат (ПК). Аморфный

 Свойства: Тс = 140 — 155 оС, Tпл = 220 — 240 оС

  • PC-HT — Термостойкий поликарбонат, сополикарбонат на основе бисфенола А и бисфенола TMC

Свойства: Аморфный, Тс = 160 — 220 оС (для сополимера)

  • PAR — Полиарилаты (ПАР)

Свойства: Аморфный, Тс = 193 оС

  • PTT – Политриметилентерефталат

 Свойства: Кристаллический, Тс = 45 — 75 оС, Tпл = 225 — 228 оС

  • PCT — Полициклогександиметилентерефталат, полиэфир PCT

 Свойства: Кристаллический, Тс = 69 — 98 о

С, Tпл = 281 — 287 оС

  • PCTA — Полициклогександиметилентерефталат-кислота, сополиэфир PCTA

Свойства: Аморфный или кристаллический, Тс = 88 — 98 оС, Tпл = 279 — 281 оС

  • TPE-E — Полиэфирный термопластичный эластомер, полиэфир-эфирный сополимер

Свойства: Кристаллический, Тс = -75 — +25 оС, Tпл = 150 — 223 оС

  • PEC — Полиэфиркарбонат, сополимер поликарбоната и полиэфира

Свойства: Аморфный

  • PCTG – Полициклогександиметилентерефталатгликоль

Свойства: сополиэфир PCTG. Аморфный, Тс = 82 — 84 оС, Tпл = 222 — 225 оС.

  • PEN – Полиэтиленнафталат.

Свойства: Кристаллический, Тс = 120 о

С, Tпл = 270 оС

  • PET — Полиэтилентерефталат (ПЭТ)

Свойства: Аморфный или кристаллический, Тс = 67 — 98 оС, Tпл = 225 — 275 оС

  • PETG — Полиэтилентерефталатгликоль (ПЭТГ)

Свойства: Аморфный, Тс = 80 оС

Тс – температура стеклования, Тпл – температура плавления.

   Все данные материалы относятся к классу сложных полиэфиров (Polyester) и не имеют отношения к простым полиэфирам (Polyether). Как правило используя слово «полиэфиры» подразумевают материалы на основе PBT, PET материала и их смеси, реже имеют ввиду  PCT, PCTA, PCTG и PETG, PPT, PEN. Такие полимеры как: PAR, PC, PC-HI, TPE-E обычно к полиэфирам не относят.

Подробнее о полиэтилентерефталате

1. Производство  ПЭТ

Сырьем для производства ПЭТФ (ПЭТ материал) обычно служит диметиловый эфир терефталевой кислоты с этиленгликолем. Получают полиэтилентерефталат поликонденсацией терефталевой кислоты (бесцветные кристаллы) или ее диметилового эфира с этиленгликолем (жидкость) по периодической или непрерывной схеме в две стадии.   По технико-экономическим показателям преимущество имеет непрерывный процесс получения  ПЭТ  из кислоты и этиленгликоля.   Этерификацию кислоты этиленгликолем (молярное соотношение компонентов от 1:1,2 до 1:1,5) проводят при 240-2700С и давлении 0,1-0,2МПа. 

Обычно ПЭТ материал с более низкой молекулярной массой (М — 20 000) применяется для изготовления волокон; в других приложениях используется материал с более высокой молекулярной массой.

Полученную смесь бис-(2-гидроксиэтил)терефталата с его олигомерами подвергают поликонденсации в нескольких последовательно расположенных аппаратах, снабженных мешалками, при постепенном повышении температуры от 270 до 3000С и снижении разряжения от 6600 до 66 Па.

После завершения процесса расплав полиэтилентерефталата выдавливается из аппарата, охлаждается и гранулируется или направляется на формование волокна. Матирующие агенты (TiO2), красители, инертные наполнители (каолин, тальк), антипирены, термо- и светостабилизаторы и другие добавки вводят во время синтеза или в полученный расплав полиэтилентерефталата.

Достигнутая регулярность строения полимерной цепи повышает способность к кристаллизации, которая в значительной степени определяет механические свойства. Фениленовая группа в основной цепи придает жесткость скелету и повышает температуру стеклования и температуру плавления. Химическая стойкость ПЭТ близка к таковой у полиамидов, и он проявляет очень хорошие барьерные свойства. ПЭТ обладает способностью существовать в аморфном или кристаллическом состояниях, причем степень кристалличности определяется термической предысторией ПЭТ материала.

При быстром охлаждении ПЭТ аморфен и прозрачен, при медленном – кристалличен (до 50%).

Товарный ПЭТ материал выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра. Производители ПЭТ в основном находятся за пределами России и СНГ.

 

       

2. Характеристики ПЭТ

ПЭТ материал имеет высокую химическую стойкость к бензину, маслам, жирам, спиртам, эфиру, разбавленным кислотам и щелочам.  Полиэтилентерефталат не растворим в воде и многих органических растворителях, растворим лишь при 40-150 град. С в фенолах и их алкил- и хлорзамещенных, анилине бензиловом спирте, хлороформе, пиридине, дихлоруксусной и хлорсульфоновой кислотах и др.. Неустойчив к кетонам, сильным кислотам и щелочам. Имеет повышенную устойчивость к действию водяного пара.

Аморфный полиэтилентерефталат – твердый прозрачный с серовато-желтоватым оттенком, кристаллический – твердый, непрозрачный, бесцветный. Отличается низким коэффициентом трения (в том числе и для марок, содержащих стекловолокно). Термодеструкция ПЭТ имеет место в температурном диапазоне 290-310 С. Деструкция происходит статистически вдоль полимерной цепи; основными летучими продуктами являются терефталевая кислота, уксусный альдегид и монооксид углерода. При 900 °С генерируется большое число разнообразных углеводородов; в основном летучие продукты состоят из диоксида углерода, монооксида углерода и метана. Для предотвращения окисления ПЭТ во время переработки можно использовать широкий ряд антиоксидантов.

Коэффициент теплового расширения (расплав)

6,55 x10-4

Сжимаемость (расплав), Мпа

6,99 х 106

Плотность, г/см3: аморфный, кристаллический

1,335, 1,420

Диэлектрическая постоянная (23 °С, 1 кГц)

3,25

Относительное удлинение при разрыве, %

12-55

Температура стеклования, аморфный, кристаллический

67, 81

Температура плавления, °С

250-265

Температура разложения

3500С

Показатель преломления (линия Na): аморфный, кристаллический

1,576, 1,640

Предел прочности при растяжении, МПа

172

Модуль упругости при растяжении, МПа

1,41×104

Влагопоглощение ПЭТ

0,3%

Допустимая остаточная влага ПЭТ

0,02%

Морозостойкость, до

-500С

3. Применение ПЭТ

Полиэтилентерефталат перерабатывается литьем под давлением, экструзией, формованием.  Волокна и тонкие пленки из ПЭТ изготавливают экструзией с охлаждением при комнатной температуре. Степень кристалличности может быть отрегулирована отжигом при некоторой температуре между температурами стеклования Тс и плавления Тпл; максимальная скорость кристаллизации достигается при -170 град. С.

Литьем под давлением из ПЭТ материала производят в основном преформы для ПЭТ-бутылок. Для этих целей уже достаточно редко используют традиционную схему литья пластмасс: термопластавтомат + литьевая форма. В современных реалиях правят бал специальные комплексы для производства ПЭТ-преформ, включающие все необходимое для интенсивного производства изделий: скоростной ТПА, сложную пресс форму, холодильники, систему роботов.

ПЭТ находит разнообразные применения благодаря широкому спектру свойств, а также возможности управлять его кристалличностью. Основное применение связано с изготовлением ПЭТ-тары, в частности бутылок для газированных напитков, поскольку ПЭТ обладает замечательными барьерными свойствами. В этом случае аморфный ПЭТ подвергается двуосному растяжению выше Tс, для создания кристалличности.
 Другие области применения ПЭТ охватывают текстильные волокна, электрическую изоляцию и изделия, получаемые раздувным формованием. Для многих применений лучшими свойствами обладают сополимеры ПЭТ.

Примером изделий из ПЭТ могут служить: детали кузова автомобиля; корпуса швейных машин; ручки электрических и газовых плит; детали двигателей, насосов, компрессоров; детали электротехнического назначения; различные разъемы; изделия медицинского назначения; упаковка из ПЭТ; ПЭТ-преформы и многое другое.  В таких изделиях, как бутылки для газированных напитков, используются смеси ПЭТ с полиэтиленнафталатом (ПЭН). ПЭН более дорогой материал, но он медленнее кристаллизуется и имеет менее выраженные эффекты старения.

4. Вторичная переработка  ПЭТ

До недавнего времени, получать вторичное ПЭТ-сырье было очень сложно. Существующие технологии и оборудование для рециклинга полиэтилентерефталата были технически несовершенны и убыточны. Однако, утилизация ПЭТ-продукции также связаны с серьезными затратами и загрязнением природы. Это заставило специалистов искать недорогие способы получения вторичного ПЭТ-сырья. В настоящее время созданы и успешно работают недорогие линии для переработки ПЭТ в том числе и российского производства.

Загрязненные отходы, содержащие, как правило, ПЭТ-бутылки, собираются, сортируются вручную или автоматически и поступают на участок дробления. Загрязненная ПЭТ-дробленка проходит несколько контуров мойки, зону отделения примесей и сушку и поступает в зону растарки. Затем полученные ПЭТ-хлопья (флексы) можно гранулировать, либо перерабатывать в негранулированном виде. Вторичный ПЭТ-материал хорошего качества можно использовать без органичений, в том числе для упаковки продуктов. Многие производители ПЭТ-преформ с успехом используют вторсырье в своем производстве.

Однако и в новых технологиях существуют некоторые изъяны. Например, вещества, с помощью которых приклеивают этикетки, могут при переработке вызывать обесцвечивание и потерю прозрачности материала, а остаточная влага способна вызвать деструкцию ПЭТ. В свою очередь, продукты разложения вызывают пожелтение пластика и изменяют его механические свойства. Кроме того, было установлено, что ПЭТ можно подвергать пиролизу для получения активированного угля.
Ещё одной проблемой, является тенденция ПЭТ к самопроизвольной кристаллизации с течением времени, то есть «старение». Это приводит к изменению свойств материала, что может вызвать изменение размеров изделия (усадку и коробление).

Тем не менее, с недавних пор и в России существует мощный рынок вторичного ПЭТ. Несколько компаний специализируются на покупке и продаже отходов и готового вторсырья ПЭТ.

Объявления о покупке и продаже оборудования можно посмотреть на         

Обсудить достоинства марок полимеров и их свойства можно на               

Зарегистрировать свою компанию в Каталоге предприятий

история, расшифровка, суть метода, результат диагностики

Позитронно-эмиссионная томография, совмещенная с компьютерной томографией (ПЭТ/КТ), является комбинацией радионуклидного и рентгеновского методов диагностики, которая позволяет за одну процедуру изучить как физиологические способности тканей, так и их анатомию.

В литературе чаще встречается сокращение названия исследования в виде аббревиатуры – ПЭТ/КТ.

История метода

Первый ПЭТ-аппарат появился в 50-х годах прошлого века в Америке, с помощью которого можно было получить только один снимок с двухмерным изображением, однако уже с помощью него удавалось выявлять злокачественные опухоли. Со временем, ПЭТ-сканеры модернизировались и усовершенствовались, давая возможность намного большее количество срезов тела.

С 70-х годов ПЭТ-исследование стало широко применяться с целью диагностики онкологических и неврологических заболеваний. И тем не менее, у метода все-таки имелся существенный недостаток – моделировались только метаболические процессы в организме без определения точного месторасположения патологических изменений.

Поэтому в 90-х годах на базе Женевского университета был сконструирован первый ПЭТ/КТ-сканер. Идея такого изобретения принадлежит онкологу Руди Энгели. Таким образом, стало возможным диагностировать рак на молекулярном уровне и определять его месторасположение с точностью до миллиметра. С того времени ПЭТ/КТ является самым достоверным методом диагностики рака и применяется во всем мире.

Не стоит тянуть с диагностикой и лечением заболевания!

Позвоните по единому номеру диспетчерской службы, выберите лучший для Вас медицинский центр из предложенных оператором и запишитесь на ПЭТ КТ исследование по сниженной цене!

+7 (499) 519-32-78 (с 08:00 до 22:00 ежедневно)

В нашей стране первый ПЭТ/КТ-сканер появился в 1997 году в Российском научном центре радиологии и хирургических технологий, который находится в Санкт-Петербурге.

Суть метода

В основу ПЭТ/КТ положена дифференциация уровней метаболизма в разных тканях. Для визуализации обмена веществ используют маркеры,  являющиеся биологически активными веществами, меченными радионуклидами.

Самый популярный радиомаркер – глюкоза, меченная радиоактивным фтором (18-фтордезоксиглюкоза, 18-ФДГ). Помимо неё, широко используются 11С-метионин, 11С холин и другие.

Перед сканированием пациентам вводят радиомаркер,  являющийся аналогом питательных веществ для клеток. Так как раковые клетки растут быстрее здоровых клеток, то, соответственно, питательных веществ им требуется больше, поэтому радиоактивного маркера в них накопится больше.

Во время сканировани датчики ПЭТ-сканера определяют очаги наибольшего скопления радиоактивного маркера, а компьютерный томограф устанавливает их месторасположение.

ПЭТ/КТ расшифровка

Вся информация, полученная от датчиков ПЭТ/КТ-сканера, передается на цифровое устройство, которое их обрабатывает и трансформирует в снимки, а последние выводятся на монитор компьютера.

Расшифровка результатов ПЭТ/КТ-диагностики является самым длительным и трудоемким процессом и представляет собой анализ полученных срезов.

В основе анализа срезов ПЭТ/КТ лежит определение степени накопления радиоактивного маркера в тканях исследуемой области.

Существует стандартизованная четырехуровневая шкала интенсивности накопления радиоактивного маркера в тканях, по которой выделяют:

  • первый уровень: соответствует накоплению контраста мягкими тканями и расслабленными мышечными волокнами;
  • второй уровень: накопление контраста печенью;
  • третий уровень: является пограничным уровнем интенсивности накопления радиоактивного маркера между печенью и головным мозгом;
  • четвертый уровень: накопление контраста головным мозгом.

Зоны с первым или вторым уровнями распределения контраста могут свидетельствовать о наличии воспалительного процесса, третий уровень указывает на наличие первичного злокачественного новообразования или хронического воспаления, а четвертый – о метастатическом поражении тканей.

Если само сканирование выполняет технический специалист, то интерпретацию снимков ПЭТ/КТ проводят врач-радиолог совместно со специалистом по ядерной физике.

Расшифровка срезов ПЭТ/КТ в основном длится от 20 минут до 1 часа. Но в сложных диагностических случаях, когда требуется мнение смежных специалистов, процедура может занять несколько дней.

Время расшифровки снимков ПЭТ/КТ зависит также от масштабов исследования. Дольше всего проводится интерпретация результатов сканирования головного мозга и всего тела.

Результат диагностики может выдаваться на руки на нескольких носителях,  именно:

  • рентгенпленка;
  • бумага;
  • цифровые носители (флешкарта, диск).

Несмотря на то, что данный метод является высокоинформативным и способен выявить патологические изменения в тканях на клеточном уровне, окончательный диагноз должен выносить лечащий доктор.

Не стоит тянуть с диагностикой и лечением заболевания!

Позвоните по единому номеру диспетчерской службы, выберите лучший для Вас медицинский центр из предложенных оператором и запишитесь на ПЭТ КТ исследование по сниженной цене!

+7 (499) 519-32-78 (с 08:00 до 22:00 ежедневно)

ПЭТ-КТ центры Москвы

Позитронно-эмиссионная томография — Википедия

У этого термина существуют и другие значения, см. ПЭТ. Изображение типичной установки позитронно-эмиссионной томографии (ПЭТ)

Позитро́нно-эмиссио́нная томогра́фия (позитронная эмиссионная томография, сокращ. ПЭТ, она же двухфотонная эмиссионная томография) — радионуклидный томографический метод исследования внутренних органов человека или животного. Метод основан на регистрации пары гамма-квантов, возникающих при аннигиляции позитронов с электронами. Позитроны возникают при позитронном бета-распаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием. Аннигиляция позитрона, остановившегося в веществе (в частности, в ткани организма), с одним из электронов среды порождает два гамма-кванта с одинаковой энергией, разлетающихся в противоположные стороны по одной прямой. Большой набор детекторов, расположенных вокруг исследуемого объекта, и компьютерная обработка сигналов с них позволяет выполнить трёхмерную реконструкцию распределения радионуклида в сканируемом объекте. Почти всегда ПЭТ-томограф комбинируется с КТ- или МРТ-сканером.

Позитронно-эмиссионная томография — активно развивающийся диагностический и исследовательский метод ядерной медицины. В основе этого метода лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределение в организме биологически активных соединений, меченных позитрон-излучающими радиоизотопами. ПЭТ-сканирование с использованием фтордезоксиглюкозы (радиоактивный индикатор — фтор-18, 18F, сокр. англ. FDG-PET) широко используется в клинической онкологии.

В конце 1950-х годов Дэвид Э. Кул, Люк Чепмен и Рой Эдвардс разработали концепт эмиссионной томографии. Позже их работа привела к проектированию и созданию нескольких томографических инструментов в университете Пенсильвании. В 1975 методы томографического исследования доработали Майкл Тер-Погосян и его сотрудники Дж. Эуджен-Робинсон и К. Шарп Кук[1].

Потенциал ПЭТ в значительной степени определяется арсеналом доступных меченых соединений — радиофармпрепаратов (РФП). Именно выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины. Поэтому разработка новых РФП и эффективных методов синтеза уже зарекомендовавших себя препаратов в настоящее время становится ключевым этапом в развитии метода ПЭТ.

На сегодняшний день в ПЭТ в основном применяются позитрон-излучающие изотопы элементов второго периода периодической системы:

Фтор-18 обладает оптимальными характеристиками для использования в ПЭТ: наибольшим периодом полураспада и наименьшей энергией излучения. С одной стороны, относительно небольшой период полураспада фтора-18 позволяет получать ПЭТ-изображения высокой контрастности при низкой дозовой нагрузке на пациентов. Низкая энергия позитронного излучения обеспечивает высокое пространственное разрешение ПЭТ-изображений. С другой стороны, период полураспада фтора-18 достаточно велик, чтобы обеспечить возможность транспортировки РФП на основе фтора-18 из централизованного места производства в клиники и институты, имеющие ПЭТ-сканеры (т. н. концепция сателлитов), а также расширить временны́е границы ПЭТ-исследований и синтеза РФП.

ПЭТ-сканирование с использованием фтордезоксиглюкозы (ФДГ-ПЭТ) широко используется в клинической онкологии. Этот трассер представляет собой аналог глюкозы, который поглощается клетками, использующими глюкозу, и фосфорилируется гексокиназой (чья митохондриальная форма значительно повышается при быстрорастущих злокачественных опухолях). Обычная доза ФДГ, используемая при онкологическом сканировании, создаёт эффективную дозу облучения 14 мЗв при однократном применении. Поскольку для следующего этапа метаболизма глюкозы во всех клетках необходим атом кислорода, который заменён фтором-18 для синтеза ФДГ, дальнейших реакций с ФДГ не происходит. Кроме того, большинство тканей (за исключением печени и почек) не могут удалить фосфат, добавленный гексокиназой. Это означает, что ФДГ задерживается в любой клетке, которая его поглощает, пока она не распадается, поскольку фосфорилированные сахара из-за их ионного заряда не могут выйти из клетки. Это приводит к интенсивному радиоактивному мечению тканей с высоким поглощением глюкозы, таких как мозг, печень и большинство видов рака. В результате, ФДГ-ПЭТ можно использовать для диагностики, постановки и мониторинга лечения злокачественных опухолей, особенно при лимфоме Ходжкина, неходжкинской лимфоме и раке лёгкого.

Схематический вид блока детектора и кольца ПЭТ-сканера

При аннигиляции позитронов с электронами, находящимися в тканях организма, почти всегда возникают два гамма-кванта. Большинство позитронов в ткани очень быстро термализуются (теряют энергию) и аннигилируют с электронами среды, уже находясь в покое, поэтому образующиеся аннигиляционные гамма-кванты имеют нулевой суммарный импульс — иными словами, они разлетаются строго по одной прямой в разные стороны и имеют одинаковую энергию 511 кэВ. Таким образом, если в двух подходящих детекторах гамма-квантов, включенных по схеме совпадений, одновременно поглощаются гамма-кванты с энергиями 511 кэВ, то следует ожидать, что точка аннигиляции находится на прямой, соединяющей эти два детектора, — на так называемой линии отклика. Используя большой набор детекторов, расположенных вокруг исследуемого объекта (или перемещая пару детекторов вокруг объекта), можно построить в пространстве множество таких прямых. Все они будут проходить через точки, в которых происходила аннигиляция (то есть через точки, где находится распавшееся ядро радионуклида — с точностью до очень короткой длины пробега позитронов в ткани).

Компания Siemens AG в своих ПЭТ/КТ устройствах применяет сцинтилляционные детекторы на основе монокристаллов оксиортосиликата лютеция (Lu2SiO5, LSO).

ПЭТ/КТ-система с 16-срезным КТ; потолочное устройство представляет собой инъекционный насос для контрастного вещества КТ

Хотя сканирование ПЭТ неинвазивно, но метод основан на применении ионизирующего излучения. Например, однократное использование 18F-FDG, который в настоящее время является стандартным средством для ПЭТ-нейровизуализации и лечения онкологических больных, в среднем создаёт эффективную дозу облучения 14 мЗв.

Для сравнения, дозировка излучения для других медицинских процедур составляет от 0,02 мЗв для рентгенограммы грудной клетки и 6,5—8 мЗв для КТ грудной клетки[2]. Среднестатистический член экипажа гражданского самолета подвергается воздействию 3 мЗв за год, а предельная максимальная рабочая доза для работников атомной энергетики может достигать 50 мЗв.

При сканировании ПЭТ-КТ облучение может быть значительным — около 23—26 мЗв (для 70 кг веса). С учётом массы (веса) тела будет увеличиваться доза вводимого радиофармпрепарата.

«Как расшифровать маркировку пластиковой посуды?» – Яндекс.Кью

К безвредным пластикам относятся товары с маркировкой:

РЕ (ПЭ) — полиэтилен,

PETF (ПЭТФ) или РЕТ (ПЭТ) — полиэтилентерефталат,

РР (ПП) — полипропилен. 

РS (ПС)  — означает полистирол (его код — цифра 6).

Кроме того, безопасность подтверждают изображение тарелки и вилки, цифры 05 и 1.

Опасный пластик помечен маркировкой

PET (ПЭТ) — такой пластик используется в основном при производстве одноразовой тары для напитков.

2 — HDPE (ПЭВД) — полиэтилен низкого давления (высокой плотности) используется для производства полужесткой тары, он — один из самых безопасных пластиков, может быть использован повторно.

3 — PCV (ПВХ) — поливинилхлорид очень часто используется, например, при производстве упаковочной пленки для пищевых продуктов.

4 — LDPE (ПЭНД) — полиэтилен высокого давления (низкой плотности), используемый для производства многих видов упаковки (например, полиэтиленовых пакетов), считается приемлемым для повторного использования и более безопасным, чем многие другие пластики, но не настолько безопасным, как пластики 2 и 5.

5 — PP (ПП) — полипропилен многоразового использования часто встречается в качестве материала для пищевых контейнеров. Он относится к группе самых безопасных пластиков наряду с материалом 2 (HDPE).

6 — PS (ПС) — полистирол хорошо известен в виде пенопласта. PS выделяет токсины и не должен использоваться в качестве пищевой упаковки. Также он редко используется для этой цели из-за более низкого химического сопротивления полиэтилену, но присутствует, например, в крышечках для одноразовых кофейных стаканчиков.

7 — OTHER (ПРОЧИЕ) — никогда не используйте повторно пластиковые изделия, помеченные цифрой 7. Эта группа включает в себя много видов вредных химических веществ, в том числе также очень токсичный бисфенол А (BPA), который может способствовать возникновению шизофрении, депрессии или болезни Альцгеймера.

Полиэтилентерефталат — это… Что такое Полиэтилентерефталат?

Полиэтилентерефталат
Полиэтилентерефталат: химическая формула
Полиэтилентерефталат: вид молекулы
Международный знак вторичной переработки для ПЭТ
Международный знак вторичной переработки для ПЭТ
Общие
Химическая формула(C10H8O4)n
Физические свойства
Плотность1,4 см³ (20 °C), аморфный: 1,370 см³, кристаллический: 1,455 г/см³
Термические свойства
Температура плавления> 250 (260) °C °C
Удельная теплоёмкость (ст. усл.)1000 Дж/(кг·К)
Теплопроводность (ст. усл.)0,15 (0,24) Вт/(м·K) Вт/(м·K)
Химические свойства
Растворимость в водепрактически нерастворим г/100 мл
Оптические свойства
Показатель преломления1,57–1,58 (1,5750)[1]
Классификация
Рег. номер CAS25038-59-9

Полиэтиле́нтерефтала́т (ПЭТФ, англ. Polyethyleneterephthalate (PET), также известный как лавсан, полиэстер) — термопластик, наиболее распространённый представитель класса полиэфиров, известен под разными фирменными названиями (см. Названия). Продукт поликонденсации этиленгликоля с терефталевой кислотой (или её диметиловым эфиром). Твёрдое, бесцветное, прозрачное вещество в аморфном состоянии и белое, непрозрачное в кристаллическом состоянии. Переходит в прозрачное состояние при нагреве до температуры стеклования и остаётся в нём при резком охлаждении и быстром проходе через т. н. «зону кристаллизации». Одним из важных параметров ПЭТ является характеристическая вязкость определяемая длиной молекулы полимера. С увеличением присущей вязкости скорость кристаллизации снижается. Прочен, износостоек, хороший диэлектрик.

Исследования по полиэтилентерефталату были начаты в 1935 г. в Великобритании Уинфилдом (англ.) (John Rex Whinfield) и Диксоном (англ. James Tennant Dickson), в фирме Calico Printers Association Ltd. Заявки на патенты по синтезу волокнообразующего полиэтилентерефталата были поданы и зарегистрированы 29 июля 1941 года и 23 августа 1943 года. Опубликованы в 1946 году.

В СССР был впервые получен в лабораториях Института высокомолекулярных соединений Академии наук СССР в 1949 году. Позже данный вид продукции начали изготавливать на Могилевхимволокно.

Название

В СССР полиэтилентерефталат и получаемое из него волокно называли лавсаном, в честь места разработки — Лаборатории Высокомолекулярных Соединений Академии Наук. Аналогичные волоконные материалы, изготавливаемые в других странах, получили другие названия: терилен (Великобритания), дакрон (США), тергал (Франция), тревира (ФРГ), теторон (Япония), полиэстер, мелинекс, милар (майлар), Tecapet («Текапэт») и Tecadur («Текадур») (Германия) и т. д.

Пластики на основе полиэтилентерефталата называются ПЭТФ (в российской традиции) либо PET/ПЭТ (в англоязычных странах). В настоящее время в русском языке употребляются оба сокращения, однако когда речь идет о полимере, чаще используется название ПЭТФ, а когда об изделиях из него — ПЭТ.

Физические свойства

При комнатной температуре нерастворим в воде и большинстве органических растворителей.

Получение

Вплоть до середины 1960-х годов ПЭТФ промышленно получали переэтерификацией диметилтерефталата этиленгликолем с получением дигликольтерефталата, и последующей поликонденсацией последнего. Несмотря на недостаток этой технологии, заключавшийся в её многостадийности, диметилтерефталат был единственным мономером для получения ПЭТФ, поскольку существовавшие в то время промышленные процессы не позволяли обеспечить необходимую степень чистоты терефталевой кислоты. Диметилтерефталат же, имея более низкую температуру кипения, легко подвергался очистке методом дистилляции и кристаллизации.[2]

В 1965 году Аmoco Соrporation смогла усовершенствовать технологию, в результате чего широкое распространение получил одностадийный синтез ПЭТФ из этиленгликоля и терефталевой кислоты (TFK) по непрерывной схеме.

Применение

Полиэтилентерефталат относится к группе алифатически-ароматических полиэфиров, которые используются для производства волокон, пищевых плёнок и пластиков, представляющих одно из важнейших направлений в полимерной индустрии и смежных отраслях.

Многообразно применение заготовок из полиэтилентерефталата в машиностроении, химической промышленности, пищевом оборудовании, транспортных и конвейерных технологиях, медицинской промышленности, приборостроении и бытовой технике. Для обеспечения лучших механических, физических, электрических свойств РЕТ наполняется различными добавками (стекловолокно, дисульфид молибдена, фторопласт).

В России полиэтилентерефталат используют главным образом для изготовления заготовок (преформ) различного вида, из которых затем изготавливаются (выдуваются после нагрева) пластиковые контейнеры различного вида и назначения (в первую очередь, пластиковые бутылки). В меньшей степени применяется для переработки в волокна (см. Полиэфирное волокно), плёнки, а также литьём в различные изделия. В мире ситуация обратная: большая часть ПЭТФ идет на производство нитей и волокон.

Область применения полиэфиров:

  • самое массовое из всех видов химических волокон для бытовых целей (одежда) и техники;
  • ёмкости для жидких продуктов питания, особенно ёмкости (пластиковые бутылки) для различных напитков;
  • чрезвычайно важный современный материал для носителей информации — основа всех современных фото-, кино- и рентгеновских плёнок; основа носителей информации в компьютерной технике (гибкие диски — дискеты, или «флоппи-диски»), основа магнитных лент для аудио-, видео- и другой записывающей техники;
  • листовой материал, прозрачный для солнечных лучей (для УФ лучей практически непрозрачен[3]) и устойчивый к воздействиям окружающей среды, используемый в сельском хозяйстве и строительстве.
  • В хирургии разорванные связки заменяют искусственными из лавсана

Недостатки

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 22 октября 2011.

Существенными недостатками ПЭТ-тары являются её относительно низкие барьерные свойства. Она пропускает кислород и углекислый газ[источник не указан 181 день], что ухудшает качество и сокращает срок хранения продукта.

ПЭТФ совершенно нестоек к действию каустической соды: как к концентрированным растворам, так и к разбавленным. Разрушение имеет в точности характер питтинговой коррозии, таким образом, толщина стенок тары не имеет значения. И наоборот, действие концентрированных растворов соляной кислоты приводит к равномерному утоньшению стенок тары, толщину которых, при определенной сноровке, можно довести до сравнимой с папиросной бумагой.

В свою очередь, фосфорная кислота разрушает ПЭТФ комбинированным образом.

Экология

Во всем мире постоянно идёт увеличение производства и потребления пластмасс, что приводит к складированию неразлагающегося мусора. При этом ПЭТФ образует основной вес в общем количестве полимерных отходов. Также он является ценным вторичным сырьем в производстве упаковочной тары, текстильной промышленности, изготовлении строительных и декоративных материалов.

В результате переработки ПЭТ-бутылок образуются хлопья, которые являются сырьём в некоторых отраслях по производству полиэфира.[4]

Сырьем для современных экологически безопасных утеплителей является ПЭТ-тара. Производство материалов из вторичного полиэтилентерефталата – производство двойного назначения. Во-первых, происходит очистка окружающей среды от пластиковой тары, которая в природе практически не разлагается. Во-вторых, производятся экологически безвредные строительные утеплительные и шумоизоляционные материалы.

В России вторичная переработка находится на начальной стадии развития, в то время, как во многих странах мира является прибыльным бизнесом.

См. также

  • Флис — ткань из полиэтилентерефталатного волокна
  • АСПЭТ — композитная арматура из полиэтилентерефталата и стекловолокна

Литература

  • A.K. van der Vegt & L.E. Govaert Polymeren, van keten tot kunstof. — 2003. — P. 279. — ISBN 90-407-2388-5
  • J. G. Speight, Norbert Adolph Lange Lange’s handbook of chemistry. — edition 16. — McGraw-Hill, 2005. — С. 2.807–2.758. — P. 1000. — ISBN 0071432205
  • GESTIS| ZVG=530566| Polyethylenterephthalat, 7 November 2007

Ссылки

Примечания

производство, использование и влияние на экологию

ПЭТ-тара – основные виды и их описание

ПЭТ-бутылки сегодня заслужено называются лидерами тары для многих разновидностей продукции. Они ежедневно используются человеком в разных сферах жизни. ПЭТ-бутылки производятся в широком разнообразии форм, цветов и размеров, что позволяет использовать их для разных нужд.

Что такое ПЭТ-бутылки

Всем известные пластиковые бутылки изготовляются из полиэтилентерефталата. Данный материал имеет много названий, которые широко используются в промышленности для его обозначения. Это полиэстер, термопластик, лавсан.

Изначально материал применялся лишь для создания текстильных волокон для упаковочной пленки. Лишь 70-х годах прошлого столетия был придуман специальный аппарат для выдувания бутылок. Помимо этого, ПЭТ имеет много других возможностей применения в разных сферах жизнедеятельности человека (преимущественно в виде тары) – в медицине, текстильной, пищевой промышленности и т. д.

История ПЭТ-бутылки

История полимеров

Технология производства ПЭТ-бутылок

Тара ПЭТ – один из самых востребованных продуктов на рынке. Поэтому технология его изготовления все время совершенствуется, внедряются новейшие разработки из разных областей промышленности. В последнее время довольно популярна технология производства ПЭТ-бутылок из гранул. Она подразумевает присутствие нескольких последовательных этапов:

Преформы для выдува ПЭТ-бутылок

Преформы для выдува ПЭТ-бутылок

  • Из гранул для ПЭТ-бутылок при помощи сушки удаляется влага. Она попадает в материал из-за контакта с воздухом.
  • Гранулированный полиэтилентерефталат расплавляют и смешивают с пигментом, что защищает его от негативного действия ультрафиолета.
  • Из полученного сырья формируют преформы. По внешнему виду они напоминают лабораторные пробирки.
  • Горлышко ПЭТ-бутылки формируется сразу с учетом сферы ее применения.
  • Преформы отправляются в печь, что придает им пластичность. Заготовка вращается, что обеспечивает равномерность прогрева.
  • Подготовленные преформы отправляются в специальный агрегат, где осуществляется их выдув. Под давлением они приобретают нужную форму.

Примеры использования ПЭТ-бутылок и другой пластиковой тары

ПЭТ-упаковка имеет много преимуществ, что определяет широкий спектр ее использования. Она отличается небольшим весом и разнообразием цветовых решений. Поэтому ПЭТ-материал используется для фасовки жидкостей разного типа – от безалкогольных напитков, молочной и прочей пищевой продукции, до технических смесей, парфюмерии, декоративной косметики.

Характеристики ПЭТ

Характеристики ПЭТ

Используя ПЭТ-бутылки, можно более эффективно организовать транспортировку товаров, поскольку они не способны разбиться в процессе перевозки, загрузки и выгрузки. Всегда существует возможность переработки материалов и производства новой продукции при помощи традиционного способа выдувания.

К недостаткам ПЭТ-упаковки относят ее низкие барьерные качества. Внутрь тары легко проникает ультрафиолетовое излучение и кислород. Из бутылки беспрепятственно выходит углекислота, что негативно сказывается на качестве сохраняемых напитков. Такие свойства ПЭТ-материала объясняется его высокой молекулярной структурой. Через него легко проникают газы с небольшим размером молекул, если сравнивать с цепочкой полимера.

Экологичность ПЭТ-бутылок и другой пластиковой тары

Экологичность ПЭТ бутылок

Экологичность ПЭТ бутылок

Чтобы изготовить продукцию из полиэтилентерефталата, не требуется большого количества электрической энергии. Поэтому такое производство не провоцирует дополнительные выбросы СО2 в атмосферу. С экологической точки зрения, более выгодно изготавливать тару большого размера, что активно внедряется в рынок.

Если размышлять о вреде ПЭТ-упаковки, следует отметить, что она способна разложиться в условиях мусорных полигонов на протяжении 150 лет (алюминиевые банки – 300 лет, стеклянные бутылки – никогда). Поэтому правильным способом утилизации подобных отходов называют их переработку.

Из полученного вторсырья преимущественно делают флекс или пеллеты, из которых в дальнейшем изготовляют различные химические волокна, пленки и другие изделия. Флекс используется для производства такой продукции:

Процесс переработки ПЭТ-бутылок

Процесс переработки ПЭТ-бутылок

  • щетки для уборочных машин;
  • упаковочные материалы;
  • тротуарная плитка;
  • черепица.

Пеллеты часто становятся сырьем для производства геосетки, наполнителя для спальных мешков. Поэтому переработка ПЭТ-бутылок является выгодным бизнесом. Хороший уровень прибыли возможен не только для больших предприятий, но и для мини-заводов с инвестициями до 200 тысяч евро.

Пагубные последствия для окружающей среды от пластиковой тары и ПЭТ-бутылок

Преимущества от ПЭТ бутылки

Преимущества от ПЭТ бутылки

В 2013 году правительство внесло предложение об ограничении торговли алкогольных напитков в ПЭТ-бутылках, что объясняется их вредным воздействием на окружающую среду. Но данный законопроект не был поддержан, поэтому пиво и другая подобная продукция продолжает выпускаться в пластиковой таре.

Активисты, которые поддерживают такой запрет, говорят не только о вреде ПЭТ-бутылок для окружающей среды. Они указывают и на увеличение потребления алкоголя из-за большого объема тары. Но это не так, поскольку среднестатистический потребитель при выборе спиртного ориентируется на его стоимость. При увеличении цен на пиво из-за запрета пластиковой тары вырастут продажи крепких напитков.

Поэтому запрет ПЭТ-бутылок — не лучшее решение. Это приведет к кризису во многих отраслях промышленности, уменьшению рабочих мест, закрытию мелких предприятий.

Факты о пластиковой бутылке

Факты о пластиковой бутылке

Видео по теме: Какие пластиковые бутылки опасны для здоровья

«Как расшифровать маркировку пластиковой посуды?» – Яндекс.Знатоки

К безвредным пластикам относятся товары с маркировкой:

РЕ (ПЭ) — полиэтилен,

PETF (ПЭТФ) или РЕТ (ПЭТ) — полиэтилентерефталат,

РР (ПП) — полипропилен. 

РS (ПС)  — означает полистирол (его код — цифра 6).

Кроме того, безопасность подтверждают изображение тарелки и вилки, цифры 05 и 1.

Опасный пластик помечен маркировкой

PET (ПЭТ) — такой пластик используется в основном при производстве одноразовой тары для напитков.

2 — HDPE (ПЭВД) — полиэтилен низкого давления (высокой плотности) используется для производства полужесткой тары, он — один из самых безопасных пластиков, может быть использован повторно.

3 — PCV (ПВХ) — поливинилхлорид очень часто используется, например, при производстве упаковочной пленки для пищевых продуктов.

4 — LDPE (ПЭНД) — полиэтилен высокого давления (низкой плотности), используемый для производства многих видов упаковки (например, полиэтиленовых пакетов), считается приемлемым для повторного использования и более безопасным, чем многие другие пластики, но не настолько безопасным, как пластики 2 и 5.

5 — PP (ПП) — полипропилен многоразового использования часто встречается в качестве материала для пищевых контейнеров. Он относится к группе самых безопасных пластиков наряду с материалом 2 (HDPE).

6 — PS (ПС) — полистирол хорошо известен в виде пенопласта. PS выделяет токсины и не должен использоваться в качестве пищевой упаковки. Также он редко используется для этой цели из-за более низкого химического сопротивления полиэтилену, но присутствует, например, в крышечках для одноразовых кофейных стаканчиков.

7 — OTHER (ПРОЧИЕ) — никогда не используйте повторно пластиковые изделия, помеченные цифрой 7. Эта группа включает в себя много видов вредных химических веществ, в том числе также очень токсичный бисфенол А (BPA), который может способствовать возникновению шизофрении, депрессии или болезни Альцгеймера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *