Мочевина синтезируется в – 1.Образование и обезвреживание аммиака. Биосинтез мочевины, последовательность реакций. Роль печени в мочевинообразовании. Возрастные особенности.

Содержание

Мочевина

Мочевина является главным конечным продуктом обмена аминокислот. Синтезируется мочевина из аммиака, который постоянно образуется в организме при окислительном и неокислительном дезаминировании аминокислот, при гидролизе амидов глутаминовой и аспарагиновой кислот, а также при распаде пуриновых и пиримидиновых нуклеотидов. Часть аммиака образуется в кишечнике в результате действия бактерий на пищевые белки (гниение белков в кишечнике) и поступает в кровь воротной вены. Аммиак — токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего — на центральную нервную систему. Несмотря на то, что аммиак постоянно продуцируется в тканях, он содержится в периферической крови лишь в следовых количествах, так как быстро удаляется из кровеносной системы печенью, где входит в состав глутамата, глутамина и мочевины. Биосинтез мочевины является основным механизмом обезвреживания аммиака в организме.

Биосинтез мочевины

Синтез мочевины происходит в печени в цикле Кребса-Гензелейта (другое название — орнитиновый цикл мочевинообразования Кребса) в несколько этапов с участием ряда ферментных систем. Синтез сопровождается поглощением энергии, источником которой является АТФ.

Весь цикл мочевинообразования можно представить следующим образом:

На первом этапе синтезируется карбамоилфосфат в результате конденсации ионов аммония, двуокиси углерода и фосфата (поступающего из АТФ) под действием фермента карбамоилсинтетазы. Карбамоилфосфат — это метаболически активная форма аммиака, используемая в качестве исходного продукта для синтеза ряда других азотистых соединений.

На втором этапе мочевинообразования происходит конденсация карбамоилфосфата и орнитина с образованием цитруллина; реакцию катализирует орнитинкарбамоилтрансфераза.

На следующей стадии цитруллин превращается в аргинин в результате двух последовательно протекающих реакций. Первая из них, энергозависимая, сводится к конденсации цитруллина и аспарагиновой кислоты с образованием аргининосукцината (эту реакцию катализирует аргининосукцинатсинтетаза). Аргининосукцинат распадается в следующей реакции на аргинин и фумарат при участии другого фермента — аргининосукцинатлиазы.

На последнем этапе аргинин расщепляется на мочевину и орнитин под действием аргиназы.

Эффективность работы орнитинового цикла при нормальном питании человека и умеренных физических нагрузках составляет примерно 60% его мощности. Запас мощности необходим для избежания гипераммониемии при изменении количества белка в пище. Увеличение скорости синтеза мочевины происходит при длительной физической работе или длительном голодании, которое сопровождается распадом тканевых белков. Некоторые патологические состояния, характеризующиеся интенсивным распадом белков тканей (сахарный диабет и др.) также сопровождаются активацией орнитинового цикла.

Нормальный ход метаболического превращения аммиака в мочевину имеет большое значение для организма. При серьезных нарушениях функции печени — например, при обширном циррозе или тяжелом гепатите — аммиак, являясь токсичным веществом, накапливается в крови, вызывая тяжелые клинические симптомы. Известны врожденные метаболические нарушения, связанные с недостатком одного из ферментов, участвующих в синтезе мочевины. Все нарушения синтеза мочевины вызывают аммиачное отравление.

Выведение мочевины

Синтезированная в печени мочевина попадает в кровь, затем в почки и в итоге выводится с мочой. Мочевина является беспороговым веществом: все образующееся количество фильтруется в просвет проксимальных канальцев, а затем часть (около 35 %) реабсорбируется обратно за счет реабсорбции воды. В связи с этим величина экскреции мочевины является менее информативным показателем клубочковой фильтрации, чем показатель, основывающийся на экскреции креатинина (который, в отличие от мочевины, практически не реабсорбируется).

Нормальные значения мочевины в крови и моче

Основные статьи:
Мочевина в крови. Клинико-диагностическое значение определения мочевины в крови
Мочевина в моче. Клинико-диагностическое значение определения мочевины в моче

Концентрация мочевины в сыворотке крови здоровых взрослых людей составляет 2,5 — 8,3 ммоль/л (660 мг/л). У женщин, по сравнению со взрослыми мужчинами, концентрация мочевины в сыворотке крови обычно ниже. У пожилых людей (старше 60 лет) наблюдается некоторое увеличение концентрации мочевины в сыворотке крови (примерно на 1 ммоль/л по сравнению с нормой здоровых взрослых людей), что обусловлено снижением у пожилых способности почек концентрировать мочу.

У детей уровень мочевины ниже, чем у взрослых, однако у новорожденных в первые 2 — 3 дня содержание ее может достигать уровня взрослого (проявление физиологической азотемии, обусловленной повышенным катаболизмом на фоне недостаточного поступления жидкости в первые 2 — 3 сут жизни и низкого уровня клубочковой фильтрации). В условиях гипертермии, эксикоза цифры мочевины могут возрасти еще больше. Нормализация наступает к концу первой недели жизни. Уровень мочевины в крови у недоношенных 1 нед. — 1,1 — 8,9 ммоль/л (6,4 — 63,5 мг/100 мл), у новорожденных — 1,4 — 4,3 ммоль/л (8,6 — 25,7 мг/100 мл), у детей после периода новорожденности — 1,8 — 6,4 ммоль/л (10,7 — 38,5 мг/100 мл).

Экскреция мочевины с мочой (при диете со средним содержанием белка) в норме составляет у взрослых 333,0 — 587,7 ммоль/сут (20 — 35 г/сут). У детей суточная экскреция мочевины с мочой ниже и увеличивается с возрастом: 1-я нед — 2,5 — 3,3 ммоль/сут, 1 мес — 10,0 — 17,0 ммоль/сут, 6 — 12 мес — 33 — 67 ммоль/сут, 1 — 2 года — 67 — 133 ммоль/сут, 4 — 8 лет — 133 — 200 ммоль/сут, 8 — 15 лет — 200 — 300 ммоль/сут.

См. также: Методы определения мочевины

Литература:

  • Комаров Ф. И., Коровкин Б. Ф., Меньшиков В. В. — Биохимические исследования в клинике — Элиста, АПП «Джангар», 1999 г.
  • Слепышева В. В., Балябина М. Д., Козлов А. В. — Методы определения мочевины
  • Березов Т. Т., Коровкин Б. Ф. — Биологическая химия — Москва, «Медицина», 1990 г.
  • Марри Р., Греннер Д., Мейес П., Родуэлл В. — Биохимия человека — том 1 — Москва, «Мир», 1993 г.
  • Биохимия — под редакцией Северина Е. С. — Москва, ГЭОТАР-МЕД, 2004 г.
  • Клиническая оценка лабораторных тестов — под редакцией Н. У. Тица — Москва, «Медицина», 1986 г.
  • Папаян А. В., Савенкова Н. Д. — «Клиническая нефрология детского возраста», Санкт-Петербург, СОТИС, 1997 г.

Цикл мочевины — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 декабря 2017; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 декабря 2017; проверки требуют 2 правки.
Схематическое изображение цикла мочевины: 1-цитруллин, 2-аргининосукцинат, 3-аргинин, 4-орнитин, 5-карбамоилфосфат[en], 6-аспарагиновая кислота, 7-фумаровая кислота, 8-вода, 9-мочевина
ОТС-орнитинтранскарбомоилаза, ASS-аргининосукцинатсинтетаза, ASL-аргининосукцинатлиаза, ARG1-аргиназа

Цикл мочевины или орнитиновый цикл (цикл Кребса-Гензелейта) — последовательность биохимических реакций млекопитающих и некоторых рыб, в результате которой азотсодержащие продукты распада преобразуются в мочевину, которая в свою очередь выделяется почками. В большинстве случаев таким образом происходит превращение аммиака. У птиц и рептилий конечным продуктом выделения является не мочевина, а мочевая кислота. Земноводные и большинство рыб не преобразуют аммиак в другие соединения, поскольку вследствие постоянного контакта с водой происходит быстрый вывод аммиака из организма через жабры или поверхность кожи в результате осмоса. Впервые описан Хансом Кребсом в 1932 году.

Необходимость в данном цикле реакций возникает вследствие того, что высокие концентрации аммиака, образующиеся в больших количествах в результате деградации нуклеотидов, оказывают угнетающее воздействие на нейроны. Мочевина же, являясь нейтральным соединением с небольшими размерами и высокой растворяемостью в физиологических жидкостях, способна легко проникать через биологические мембраны, легко переносится кровью и выделяется с мочой.

Реакции цикла мочевины локализованы исключительно в клетках печени и протекают частью в митохондриях, а частью в цитозоле, в результате чего возникает необходимость в переносчиках.

Реакции в митохондрии[править | править код]

Реакции в цитоплазме[править | править код]

  • В цитоплазме цитруллин с аспарагиновой кислотой при участии фермента аргининсукцинат-синтетазы образует совместно аргининосукцинат. В ходе данной реакции расходуется энергия превращения одной молекулы АТФ в АМФ (что эквивалентно превращению двух молекул АТФ в АДФ). Образовавшийся в ходе реакции дифосфат гидролизируется для обеспечения необратимости процесса (на схеме не показано).
  • Под действием фермента аргининосукцинат-лиазы аргининосукцинат распадается на фумарат и аргинин.
  • Аргинин в свою очередь гидролизируется при участии аргиназы (аргининогидролазы) с образованием мочевины и орнитина, который сразу же переносится в митохондрию и цикл повторяется вновь.

Суммарное уравнение реакций[править | править код]

NH3 + CO2 + 3ATФ + аспарагиновая кислота + 2H2O → мочевина + фумарат + 2AДФ +2Фн

+ АМФ + ФФн

Энергетический выход цикла составляет затрату четырёх макроэргических связей на одну молекулу мочевины, поскольку пирофосфат далее превращается до фосфата.

Следует заметить, что полученная в процессе реакции аргининосукциназы молекула фумарата снижает энергетическую стоимость цикла. Фумарат, реагируя с молекулой воды в цитозоле, дает малат. Малат же вступает в цикл Кребса и с помощью НАД окисляется. Продуктами этой реакции являются НАДH и оксалоацетат. НАДH вступает в дыхательную электронтранспортную цепь. Окисление НАДH дает примерно 2,5 молекул АТФ, следовательно, стоимость цикла мочевины после этих дополнительных реакций составляет 1,5 молекул АТФ.

Нарушения цикла мочевины, например, в силу мутаций генов, кодирующих участвующие в цикле ферменты, приводят к заболеваниям цикла мочевины. Большинство таких заболеваний приводят к гипераммониемии.

Цикл мочевины

— удаление аммиака — Биохимия

Практически весь аммиак удаляется из организма:

  1. с мочой в виде мочевины, которая синтезируется в печени,
  2. в виде образующихся в эпителии канальцев почек солей иона аммония.

В клетки печени и почек аммиак попадает в составе глутамина и аспарагина, глутаминовой кислоты, аланина и в свободном виде. Кроме этого, при метаболизме он образуется в большом количестве и в самих гепатоцитах.

В клетке глутамин и аспарагин дезаминируются соответственно глутаминазой и аспарагиназой с образованием аммиака (точнее, иона аммония).

Реакция дезаминирования глутамина

Аланин вступает в реакцию трансаминирования. Образованный в результате реакции пируват идет в глюконеогенез или энергетический обмен. Параллельно образуется глутаминовая кислота.

В целом глутаминовая кислота в гепатоците может появляться тремя путями: 1) из крови, 2) при дезаминировании глутамина, 3) при трансаминировании α-кетоглутарата с аспартатом или аланином. Происхождение и дальнейшая ее судьба зависит от конкретных концентраций всех задействованных веществ. Обычно далее глутамат дезаминируется глутаматдегидрогеназой с образованием аммиака.

Синтез мочевины

В печени весь удаляемый аммиак используется для синтеза мочевины. Увеличение синтеза мочевины наблюдается при распаде тканевых белков и азотистых соединений (голодание, воспалительные процессы, сахарный диабет) или при избыточном белковом питании. У младенцев и детей синтез мочевины может быть снижен по двум причинам: незрелость печени и активный синтез белков и нуклеиновых кислот при росте организма. Определение концентрации мочевины в крови является ценным диагностическим показателем.

Реакции синтеза мочевины являются циклическим процессом и получили название орнитиновый цикл. Синтез мочевины начинается в митохондриях (первая и вторая реакции), оставшиеся три реакции идут в цитозоле. Для переноса цитруллина и орнитина через митохондриальную мембрану существуют специальные переносчики.

В образовании одной молекулы мочевины участвует 1 молекула NH4+, 1 молекула CO2, аминогруппа 1 молекулы аспарагиновой кислоты, затрачивается 4 макроэргических связи трех молекул АТФ.

Реакция синтеза карбамоилфосфата и орнитиновый цикл

Как побочный продукт орнитинового цикла образуется фумаровая кислота, переносимая обратно в митохондрии. Здесь в реакциях ЦТК из нее образуется оксалоацетат, который трансаминируется с глутаматом до аспартата, выходит в цитозоль и вновь реагирует с цитруллином.

В противоположность аммиаку мочевина является нетоксичным и нейтральным соединением. При хронической почечной недостаточности, когда продукты азотистого обмена не выводятся из организма, токсичное действие на организм оказывает совсем не мочевина, а совокупность более чем 200 других веществ.

Синтез аммонийных солей

Непосредственный синтез аммонийных солей или аммониегенез происходит в просвете канальцев почек из секретируемых сюда аммиака и ионов водорода и фильтрующихся органических и неорганических анионов первичной мочи. Около 10% всего аммиака выводится почками в виде аммонийных солей.

Часть глутамина крови, не задержавшаяся в печени, достигает почек. В эпителиальных клетках почечных канальцев, в основном в дистальных канальцах, имеется фермент глутаминаза, гидролизующая амидную группу с образованием глутамата. Глутамат, в свою очередь, дезаминируется глутаматдегидрогеназой и полученный α-кетоглутарат сгорает в ЦТК. Также, особенно при голодании, α-кетоглутарат вовлекается в синтез глюкозы.

Параллельно в эпителии происходят процессы клеточного дыхания, сопровождающиеся образованием угольной кислоты, которая диссоциирует на ион Н+ и карбонат-ион НСО3. Ионы водорода секретируются в первичную мочу, карбонат-ионы – в кровь.

Выделяемый аммиак

  • либо диффундирует в просвет канальца, где соединяется с ионом Н+, образуя ионы аммония NH4+. Они связываются с неорганическими (фосфаты, хлориды, сульфаты) или с органическими анионами (уксусной, щавелевой, молочной кислот),
  • либо связывается с ионом ионом Н+ в самой клетке, образуя ионы аммония Nh5+, который секретируется в обмен на ионы Na+.
Реакции синтеза аммонийных солей

При сдвигах кислотно-основного равновесия происходит адаптивное изменение активности глутаминазы. При ацидозе (закислении крови) необходимость выведения ионов Н+ вызывает увеличение синтеза фермента и возрастание экскреции солей аммония. При алкалозе (защелачивании крови) активность глутаминазы снижается и ионы Н+ сберегаются в организме.

1.Образование и обезвреживание аммиака. Биосинтез мочевины, последовательность реакций. Роль печени в мочевинообразовании. Возрастные особенности.

Пути образования аммиака

Аммиак образуется во всех тканях, особенно в головном мозге, а обезвреживается в печени и почках.

Пути образования:

1)дезаминирование а/к-т;

2)дезаминирование пуриновых оснований;

3)распад пиримидиновых оснований;

4)дезамидирование амидов;

5)дезаминирование биогенных аминов;

6)распад гексозаминов

Дезаминирование – основной путь распада (катаболизма) а/к-т. В сутки подвергается дезаминированию ок.70 г а/к-т.

Виды:

1)гидролитический

2)восстановительное дезаминирование

3)внутримолекулярное (асп,асн и гис),

4)окислительное (этот вид является основным(глу).

Процесс происходит под действием фермента – глутаматДГ, который находится в активном виде.

Пути обезвреживания аммиака.

Аммиак в малых дозах – это физиологический раздражитель, в больших – токсическое вещество. Поэтому концентрация аммиака в организме должна находиться на низком уровне – 60 мкМ/л. Гомеостаз аммиака поддерживается за счет его обезвреживания в тканях.

Пути:

1)амидирование;

2)аммонийгенез;

3)восстановительное аминирование;

4)синтез мочевины.

Аммиак, образующийся при дезамидировании в печени, обезвреживается, используясь на синтез мочевины. В почках — на образование аммонийных солей(аммонийгенез). В печени и других тканях аммиак обезвреживается в р-те реакции восстановительного аминирования. Преимущественно в печени идет процесс образования мочевины, являющийся основным путем обезвреживания аммиака.

Образование мочевины получило название орнитиновый цикл, или цитруллиновая теория. Синтез мочевины протекает в МТХ печени. Предварительно в МТХ под действием карбамоилфосфатсинтетазы I с затратой 2АТФ аммиак связывается с СО2 с образованием карбамоилфосфата:

1.В МТХ орнитинкарбамоилтрансфераза переносит карбамоильную группу карбамоилфосфата на орнитин и образуется — цитруллин:

2.В цитозоле аргининосукцинатсинтетаза с затратой 1АТФ(2макроэргических связей)связывает цитруллин с аспартатом и образуется аргининосукцинат(аргининоянтарная к-та).Фермент нуждается в Mg2+.мАспартат-источник 2ого атома азота мочевины.

3.В цитозоле аргининосукцинатлиаза(аргининсукциназа) расщепляет аргининосукцинат на аргинин и фумарат (аминогруппа аспартата оказывается в аргинине).

Фумарат в ЦТК.

4.В цитозоле аргиназа гидролизует аргинин на орнитин и мочевину. У аргиназы кофакторы ионы Са2+ или Мn2+,ингибиторы-высокие концентрации орнитина и лизина.

Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается. Мочевина в кровь->почки->выводится.

Общее уравнение синтеза мочевины:

CO2+Nh4+асп+3АТФ+2Н2О→мочевина+ фумарат+2АДФ+АМФ+2Фн+ФФн.

На синтез 1 молекулы мочевины расходуются 4 макроэргических связи 3АТФ.

Ф-ии цикла:

1.превращает азота АК в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов,главным образом аммиака.

2.синтез аргинина и пополнение его фонда в организме.

Нарушение цикла:

1.Гипераммониемия 1 типа — дефект карбомаилфосфат синтетазы.

2.Гипераммониемия 2типа

3.Цитруллинемия

4.Оргининсукцинатомия

5.Гиперарининемия.

Мочевинообразованиеодна из важнейших дезинтоксикационных функций печени, заключающихся в преобразовании ядовитых оскол­ков белковой молекулы в нетоксичное вещество. При дезаминировании а/к-т, нуклеотидов и др.азотистых соединений печень принимает участие в синтезе аммиака, превышение предель­но допустимых концентраций которого становится высокотоксичным для   организма. Дезинтоксикация   аммиака   происходит   посредством использования его для синтеза мочевины.

2.2. .Биосинтез мочевины как основной механизм предотвращения накопления аммиака. Клиническое

значение определения мочевины.

Еще в прошлом веке русские ученые М.В. Ненцкий и С.С. Салазкин показали, что в печени происходит образование мочевины из углекислого газа и аммиака.

Кребс и Гензеляйт установили, что синтез мочевины представляет собой циклический процесс, в котором ключевым соединением, замыкающим цикл, является орнитин. Кохен и Ратнер выяснили, что начальной реакцией этого цикла является синтез карбамоилфосфата.

В печени аммиак связывается с СО2 с образованием карбамоилфосфата под действием карбамоилфосфатсинтетазы. Затем под действием орнитин-карбамоилтрансферазы карбамоильная группа карбамоилфосфата переносится на орнитин и образуется цитруллин. В следующей реакции аргининосукцинатсинтетаза связывает его с аспартатом и образуется аргининоянтарная кислота. Аспартат – источник второго атома азота мочевины. Далее происходит расщепление аргининоянтарной кислоты на аргинин и фумарат (идет в ЦТК). Аргинин гидролизуется под действием аргиназы на орнитин и мочевину. Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.

Первые две реакции происходят в митохондриях гепатоцитов. Затем цитруллин транспортируется в цитозоль, где и осуществляются дальнейшие превращения.

Орнитиновый цикл в печени выполняет 2 функции:

1. превращение азота аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных

продуктов — аммиака;

2. синтез аргинина и пополнение его в организме.

Отмечается, что у детей первых месяцев жизни функция печени развита недостаточно, что проявляется в том, что у ребенка количество аммиака по сравнению с взрослым человеком увеличено в 2-2,5 раза. У новорожденных – 20-30% общего азота падает на азот мочевины.

Мочевина – безвредное для организма соединение. Главным местом ее образования в организме является печень, где есть ферменты мочевинообразования. В головном мозге имеются все ферменты синтеза мочевины, кроме карбамоилфосфатазы, поэтому в нем мочевина не образуется. Мочевина – основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота. В норме экскрекция мочевины – 25-30 г/сут. При повышении количества потребляемых с пищей белков увеличивается выделение мочевины.

2.3. Синтез креатина, креатин-фосфата, значение этого синтеза для организма. Клиническое

значение определения креатинина.

Конечным продуктом распада аминокислот в организме, наряду с мочевиной, является креатинин, который образуется в мышечной ткани из креатинфосфата. Креатин и креатинфосфат – важнейшие азотистые вещества мышц, участвующие в химических процессах, связанных с ресинтезом АТФ, являющегося участником мышечного сокращения. Это небелковые азотистые вещества мышц. Креатин синтезируется в почках и печени из трех аминокислот, затем поступает в мышечную ткань.

Эта реакция является одним из путей ресинтеза АТФ и протекает в работающей мышце. Креатинин удаляется в составе мочи. Содержание креатинина в моче зависит от развития мышечной массы. Т.о. следует подчеркнуть, что мочевина, креатинин, соли аммония являются конечными продуктами обмена аминокислот, а определение их в моче является диагностическим показателем. В норме мочевины за сутки у взрослого выделяется около 25- 30г, креатинина – 1,5-2,4 г., солей аммония – 0,5-1,2 г.

Количество креатинина в моче повышается при распаде белков, усиленной мышечной работе, акромегалии, гипотиреозе.

Креатин в норме у взрослого в моче не обнаруживается, а у детей в связи с повышенным обменом веществ может наблюдаться креатинурия.

Креатин в моче появляется при авитаминозе витаминов »С» и »Е», сахарном диабете, голодании, а также при всех заболеваниях, связанных с распадом мышечной ткани.

1. Реакции синтеза мочевины

Мочевина (карбамид) — полный амид угольной кислоты — содержит 2 атома азота. Источником

одного из них является аммиак, который в печени связывается с диоксидом углерода с образованием

Рис. 9-13. Глюкозо-аланиновый цикл.

481

Рис. 9-14. Обмен аммиака. Основной источник аммиака — аминокислоты. Большая часть образовавшегося аммиака обезвреживается в орнитиновом цикле в печени и выделяется в виде мочевины. Основной реакцией обезвреживания аммиака в тканях является синтез глутамина, который затем используется в анаболических процессах и для обезвреживания веществ в печени. Ферменты глутаматдегидрогеназа и глутаминсинтетаза являются регуляторными и обусловливают скорость процессов образования и обезвреживания аммиака.

Рис. 9-15. Количество азотсодержащих веществ в моче (%) при нормальном белковом питании.

карбамоилфосфата под действием карбамоилфосфатсинтетазы I (см. схему А ниже).

Далее под действием орнитинкарбамоилтрансферазы карбамоильная группа карбамоилфосфата переносится на α-аминокислоту орнитин, и образуется другая α-аминокислота — цитруллин (см. схему Б на с. 483).

В следующей реакции аргининосукцинатсинтетаза связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарную кислоту). Этот фермент нуждается в ионах Mg2+. В реакции затрачивается 1 моль АТФ, но используется энергия двух макроэргических связей. Аспартат — источник второго атома азота мочевины (см. схему А на с. 483).

Схема А

482

Схема Б

Схема А

Далее фермент аргининосукцинатлиаза (аргининосукциназа) расщепляет аргининосукцинат на аргинин и фумарат, при этом аминогруппа аспартата оказывается в молекуле аргинина (см. схему Б ниже).

Аргинин подвергается гидролизу под действием аргиназы, при этом образуются орнитин и мочевина. Кофакторами аргиназы являются ионы Са2+ или Мn2+. Высокие концентрации орнитина и лизина, являющихся структурными аналогами аргинина, подавляют активность этого фермента:

Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.

Первые две реакции процесса происходят в митохондриях гепатоцитов. Затем цитруллин, являющийся продуктом этих реакций, транспортируется в цитозоль, где и осуществляются дальнейшие превращения (рис. 9-16).

Суммарное уравнение синтеза мочевины:

СО2 + Nh4 + Аспартат + 3 АТФ + 2 Н2О → Мочевина + Фумарат + 2 (АДФ + Н3Р04) + АМФ + h5P2O7.

Аммиак, используемый карбамоилфосфатсинтетазой I, поставляется в печень с кровью ворот-вены. Роль других источников, в том числе гсительного дезаминирования глутаминовой эты в печени, существенно меньше.

Аспартат, необходимый для синтеза аргининокцината, образуется в печени путём трансаминирования

Схема Б

Рис. 9-16. Орнитиновый цикл Кребса-Гензелейта. Окислительное дезаминирование глутамата происходит в митохондриях. Ферменты орнитинового цикла распределены между митохондриями и цитозолем. Поэтому необходим трансмембранный перенос глутамата, цитруллина и орнитина с помощью специфических транслоказ. На схеме показаны пути включения азота двух разных аминокислот (аминокислота 1 и аминокислота 2) в молекулу мочевины: • одна аминогруппа — в виде аммиака в матриксе митохондрии; • вторую аминогруппу поставляет аспартат цитозоля.

аланина с оксалоацетатом. Алании поступает главным образом из мышц и клеток кишечника. Источником оксалоацетата, необходимого для этой реакции, можно считать превращение фумарата, образующегося в реакциях орнитинового цикла. Фумарат в результате двух реакций цитратного цикла превращается в оксалоацетат, из которого путём трансаминирования образуется аспартат (рис. 9-17). Таким образом, с орнитиновым циклом сопряжён цикл регенерации аспартата из фумарата. Пиру ват, образующийся в этом цикле из аланина, используется для глюконеогенеза.

Ещё одним источником аспартата для орнитинового цикла является Трансаминирование глутамата с оксалоацетатом.

Карбамид (мочевина) | справочник Пестициды.ru

Физические и химические свойства

– бесцветные кристаллы без запаха.
  • Растворимость в воде (в 100 г): при +20°C – 51,8 г, при +60°C – 71,7 г, при +120 °C – 95,0 г.
  • Карбамид растворим в метаноле, этаноле, изопропаноле, изобутаноле, этилацитате, не растворим в хлороформе.
  • Мочевина способна образовывать соединения с включением неорганических веществ и с органическими веществами.
  • Температура плавления – +132,7°C.
  • Плотность при +25°C – 1330 кг/м3
  • При нагревании до 150°C и выше карбамид превращается в NH4NCO, затем NH3 и CO2, биурет, циануровую кислоту.
  • В разбавленных растворах при 200°C возможен полный гидролиз мочевины с образованием NH3 и CO2.[7]
– бесцветные гранулы размером от 1 до 4 мм. Массовая доля азота в пересчете на сухое вещество – 46,2 %.
  • Массовая доля биурета не должна превышать 1,4 %.
  • Массовая доля воды по методу высушивания – не более 0,3 %.
  • Рассыпчатость – не менее 100 %.[3]

Применение

Выпускается две марки карбамида: А – для промышленности и Б – для растениеводства.[3]

Сельское хозяйство

Карбамид применяют под все сельскохозяйственные культуры в качестве основного удобрения (для основного внесения), для ранневесенней подкормки озимых культур с немедленной заделкой в почву, а также для подкормки овощных и пропашных культур при помощи культиваторов-растениепитателей. Карбамид идеально подходит для некорневых подкормок растений[8] и фертигации.[6]

Зарегистрированные и допущеные к использованию в сельском хозяйстве на территории России марки карбамида размещены в таблице справа.[4]

Промышленность

Карбамид используется в промышленности в качестве сырья при изготовлении смол, клеев, а также в животноводстве в качестве кормовой добавки.[3]

Поведение в почве

Мочевина в почве растворяется почвенным раствором и под влиянием уробактерий, выделяющих уразу (пециальный фермент), за два-три дня аммонифицируется и превращается в углекислый аммоний:

CO(NH2)2 + 2H2O → (NH4)2CO3

Углекислый аммоний – соединение нестойкое, на воздухе разлагается, образуя бикарбонат аммония и аммиака:

(NH4)2CO3 → NH4HCO3 + NH3

По этой причине при внесении мочевины без заделки в почву в отсутствие осадков часть азота в виде аммиака теряется. Такие потери значительнее в почвах с нейтральной и щелочной реакцией.

Углекислый аммоний, заделанный в почву, подвергается гидролизу. При этом образуется бикарбонат аммония и гидроксид аммония:

(NH4)2CO3 + H2O → NH4HCO3 + NH4OH

Образующийся при внесении в почву карбомида аммоний поглощается коллоидной фракцией и постепенно усваивается растениями. Установлено, что мочевина может быть поглощена корнями и листьями растений без предварительного превращения. Но существует опасность вымывания из почвы мочевины, не прошедшей аммонификацию.

По мере процесса аммонификации мочевины происходит временное локальное подщелачивание почвы из-за гидролиза углекислого аммония. По истечении некоторого времени аммоний подвергается нитрификации, образуя кислоту и двигая реакцию в сторону подкисления:

2NH3 + 3O2 → 2HNO2 + 2H2O

2HNO2 + O2 → 2HNO3

Таким образом, карбамид является биологически кислым удобрением. Но после усвоения растениями азота из данного удобрения в почве не остается ни кислотных, ни щелочных остатков.[2]

Применение на различных типах почв

Карбамид применяется в качестве основного удобрения на всех почвах под различные сельскохозяйственные культуры.[8]

в зоне достаточного увлажнения и при орошении на сероземах карбамид более эффективен, чем аммиачная селитра. при основном внесении карбамид равнозначен аммиачной селитре.[5]необходимо при внесении немедленно заделывать карбамид в почву для уменьшения потерь азота.[1]

Способы внесения

Мочевину применяют до посева и в подкормку.[2]

В качестве основного удобрения карбамид применяется на всех почвах и под все сельскохозяйственные культуры.

Ранневесенняя подкормка озимых проводится с немедленной заделкой удобрения в почву боронованием в целях сокращения потерь аммиака.

Подкормка овощных и пропашных культур проводится с использованием культиваторов-растениепитателей.

Карбамид считается лучшей формой азотных удобрений для некорневых подкормок растений, поскольку не обжигает листья и способен поглощаться ими в виде целой молекулы, без разложения.[8]

Уже через 48 часов после опрыскивания карбамидом азот обнаруживается в составе белка растений.[2]

Карбамид – одно из удобрений, рекомендуемых при фертигации.[6]

Влияние на сельскохозяйственные культуры

Карбамид – ценное азотное удобрение. Эффективен при применении под различные культуры. По действию на урожай стоит в одном ряду с аммиачной селитрой.[5]

. Применение мочевины на свекле (все виды) и рапсе до посева может привести к гибели проростков.[2]. Применение карбамида в качестве некорневой подкормки значительно повышает содержание белка в зерне.[2]

Получение

Карбамид получают синтезом из аммиака и диоксида углерода (CO2) при высоком давлении и температуре. Для улучшения физических и химических свойств кристаллическую мочевину гранулируют. Гранулы для уменьшения слеживаемости покрывают тонкой пленкой жировой добавки.[6]

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *