Белки плазмы крови антитела выполняют функцию: Белки плазмы крови – Белки плазмы крови » СтудИзба

Содержание

Охарактеризуйте белковый состав крови. Каковы функции белков плазмы крови?

БИОХИМИЯ КРОВИ

Белки плазмы крови.

Плазма крови содержит сложную многокомпонентную (более 100) смесь белков, различающихся по происхождению и функциям. Большинство белков плазмы синтезируется в печени. Иммуноглобулины и ряд других защитных белков иммунокомпетентными клетками.

Содержание общего белка в сыворотке крови здорового человека составляет 65 — 85 г/л (в плазме крови этот показатель на 2 – 4 г/л выше за счёт фибриногена).

Белковые фракции. 5 белковых фракций (в порядке убывания скорости миграции): альбумины, α1-, α2-, β- и γ-глобулины. При использовании более тонких методов фракционирования в каждой фракции, кроме альбуминовой, можно выделить целый ряд белков.

Альбумины – белки с молекулярной массой около 70000 Да. Благодаря гидрофильности и высокому содержанию в плазме играют важную роль в поддержании коллоидно-осмотического (онкотического) давления крови и регуляции обмена жидкостей между кровью и тканями. Выполняют транспортную функцию: осуществляют перенос свободных жирных кислот, желчных пигментов, стероидных гормонов, ионов Са2+, многих лекарств. Альбумины также служат богатым и быстро реализуемым резервом аминокислот.

α1-Глобулины:

Кислый α1-гликопротеин (орозомукоид) – содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления.

α1-Глобулины:

Кислый α1-гликопротеин (орозомукоид) – содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления (Я.Мусил, 1985).

α1-Антитрипсин – ингибитор ряда протеаз (трипсина, химотрипсина, калликреина, плазмина). Врождённое снижение содержания α1-антитрипсина в крови может быть фактором предрасположенности к бронхо-лёгочным заболеваниям, так как эластические волокна лёгочной ткани особенно чувствительны к действию протеолитических ферментов.

β-Глобулины:

Трансферрин – главный белок β-глобулиновой фракции, участвует в связывании и транспорте трёхвалентного железа в различные ткани, особенно в кроветворные. Трансферрин регулирует содержание Fe3+ в крови, предотвращает избыточное накопление и потерю с мочой.

С-реактивный белок (С-РБ) – белок, способный преципитировать (в присутствии Са2+) С-полисахарид клеточной стенки пневмококка. Биологическая роль его определяется способностью активировать фагоцитоз и ингибировать процесс агрегации тромбоцитов. У здоровых людей концентрация С-РБ в плазме ничтожно мала и стандартными методами не определяется. При остром воспалительном процессе она увеличивается более чем в 20 раз, в этом случае С-РБ обнаруживается в крови. Исследование С-РБ имеет преимущество перед другими маркерами воспалительного процесса: определением СОЭ и подсчётом числа лейкоцитов. Данный показатель более чувствителен, его увеличение происходит раньше и после выздоровления быстрее возвращается к норме.

γ-Глобулины:

Иммуноглобулины (IgA, IgG, IgM, IgD, IgE) представляют собой антитела, вырабатываемые организмом в ответ на введение чужеродных веществ с антигенной активностью.

Плазма крови, функции, электролиты, антитела

Плазма крови: функции, питательные вещества, белки, электролиты и антитела

Содержание статьи

Плазма – это жидкая часть крови. Эта слегка желтая жидкость на 90% состоит из воды. Хотя часто считается, что она менее важна, чем клетки крови, которые переносят кислород и обеспечивают иммунитет, плазма в равной степени важна. Она отвечает за множество различных функций в теле.

Функции плазмы крови

Состав плазмы крови1.     Транспорт питательных веществ

Одной из важнейших функций плазмы является транспортировка питательных веществ по всему телу. Поскольку пища переваривается в желудке и кишечнике, она разбивается на компоненты. Они включают аминокислоты (строительные блоки белков), липиды (жиры), сахара (глюкоза) и жирные кислоты. Эти питательные вещества распределяются по клеткам по всему телу, где они используются для поддержания здоровых функций и роста.

2.     Транспорт отходов

В дополнение к транспортировке питательных веществ плазма транспортирует такие отходы организма, как мочевая кислота, креатинин и соли аммония, из клеток организма в почки. Почки фильтруют эти отходы из плазмы и выделяют их из организма в виде мочи.

3.     Поддержание объема крови

Примерно 7% плазмы являются белками. Белок, находящийся в самой высокой концентрации в плазме, представляет собой альбумин, важный для восстановления и роста тканей. Эта высокая концентрация альбумина важна для поддержания осмотического давления в крови.

Альбумин также присутствует в жидкостях, которые окружают клетки, известные как интерстициальная жидкость. Концентрация альбумина в этой жидкости ниже, чем в плазме. Из-за этого вода не может перемещаться из промежуточной жидкости в кровь. Если бы в плазме не было столько альбумина, вода переместилась бы в кровь, увеличивая объем крови и вызывая повышение артериального давления, что заставило бы сердце работать сильнее.

4.     Баланс электролитов

Плазма крови несет соли, также называемые электролитами, по всему телу. Эти соли, включая натрий, кальций, калий, магний, хлорид и бикарбонат, имеют важное значение для многих функций организма. Без этих солей мышцы не сокращались бы, а нервы не могли бы посылать сигналы в мозг и из него.

5.     Защита организма

Плазма несет другие белки, помимо альбумина, по всему телу. Иммуноглобулины, также известные как антитела, представляют собой белки, которые отражают посторонние вещества, такие как бактерии, которые вторгаются в организм. Фибриноген – это белок, необходимый для того, чтобы помочь тромбоцитам (клеткам в крови) образовывать сгустки крови. Путем переноса этих белков плазма играет решающую роль в защите организма от инфекции и кровопотери.

плазма кровиПонимание нашей анатомии и физиологии – структуры тела и того, как они работают – может помочь вам принять правильные решения о здоровье и питании. Ваша кровь – это жидкость, которая доставляет кислород и питательные вещества в ваши клетки. Кровь по существу представляет собой смесь на основе воды из многих химических веществ, включая суспензию клеток. В частности, плазмой является жидкая часть крови.

Компоненты крови в плазме крови

Ваша кровь – это жидкость, которая соединяет все клетки организма. Она не только приносит питательные вещества и кислород в клетки из легких и пищеварительного тракта, но и переносит ненужные продукты из клеток для удаления. Ваши клетки общаются друг с другом через кровь – жидкая среда несет химические мессенджеры из одной клетки в другую. Кровь состоит из жидкости на водной основе, называемой плазмой, плюс суспензия многих различных типов клеток крови.

Плазменная композиция

Плазма во многом похожа на морскую воду – она ​ основана на воде, но содержит много солей, включая натрия хлорид или поваренную соль. Плазма также содержит много химических веществ, которые не встречаются в морской воде, включая белки крови, компоненты свертывания крови и клеточные посланники, называемые гормонами. Цельная кровь составляет приблизительно 45% клеток и 55% плазмы. Сама плазма крови – это в основном вода – около 90%.

Транспорт питательных веществ

Одной из важных ролей крови является транспортировка питательных веществ в клетки организма. Клетки крови не участвуют в транспортировке питательных веществ – вместо этого питательные вещества растворяются в самой плазме. Например, когда вы употребляете содержащую углеводы муку, вы перевариваете углеводы и впитываете сахар, называемый глюкозой, в кровоток. Глюкоза растворяется в плазме крови – она ​​называется сахаром в крови – и плазма переносит ее в клетки организма.

Регулирование питательных веществ

Для того, чтобы хорошо питать клетки организма, ваше тело работает, чтобы поддерживать стабильные концентрации некоторых ключевых питательных веществ в крови. Энергетические питательные вещества в крови включают аминокислоты, которые поступают из белков и жиров, но наиболее регулируемыми питательными веществами в крови является глюкоза. Ваша поджелудочная железа использует два разных гормона, чтобы поддерживать уровень глюкозы в крови относительно постоянным. Если уровень сахара в крови начинает повышаться слишком сильно, поджелудочная железа выделяет инсулин для снижения уровня сахара в крови. Если сахар в крови начинает падать, поджелудочная железа выделяет глюкагон, чтобы поднять его.

Другие питательные вещества влияют на плазму крови, даже если они не обеспечивают энергию клеткам. Например, витамин К является одним из микронутриентов. Ваше тело использует витамин К, чтобы помочь в процессе свертывания крови, которое необходимо, когда вы повредите кровеносный сосуд или порежетесь. Без достаточного количества витамина К в плазме крови ваша кровь не может сгущаться, у вас может возникнуть кровотечение.

Какие белки находятся в плазме крови?

Кровь представляет собой высокоспециализированную форму соединительной ткани, состоящую из нескольких клеточных элементов и жидкого элемента. Клеточные элементы крови – это красные или белые клетки крови, тромбоциты. Жидкий элемент известен как плазма крови. Эта плазма состоит из воды, белков, гормонов, витаминов, аминокислот, липидов, углеводов и неорганических солей. Рядом с водой, которая содержит 90% ее состава, наиболее важными элементами в плазме крови являются три белка плазмы крови: альбумины, глобулины и фибриноген.

Альбумин

Альбумин составляет самую большую долю белков плазмы крови. Альбумин продуцируется печенью и отвечает за поддержание постоянного уровня жидкости в крови, поэтому кровь постоянно течет в кровоток, а не просачивается в окружающие ткани. Альбумин также функционирует как носитель, связывающий специфические молекулы в плазме крови, так что он может нести питательные вещества и витамины там, где они необходимы в организме. Уровни альбумина являются сильными показателями здоровья; низкий уровень альбумина может указывать на несколько потенциально опасных состояний, таких как тяжелая дегидратация, повреждение печени и почечная недостаточность.

Глобулин

Хотя глобулины составляют меньшую долю белка плазмы крови, они выполняют очень важную функцию обеспечения антител. Белок глобулина фактически подразделяется на четыре основные категории: гамма-глобулин, альфа-1 глобулин, альфа-2 глобулин и бета-глобулин. Гамма-глобулины также классифицируются как иммуноглобулин и представляют собой специфическую группу белка плазмы, которая функционирует как антитела, обеспечивающие защиту от заболеваний на клеточном уровне. Альфа и бета глобулины в основном действуют как переносчики для жирорастворимых витаминов, гормонов и липидов. Альфа и бета глобулины синтезируются в печени. Гамма-глобулины, однако, создаются лимфоидной тканью.

Фибриноген

Фибриноген также создается печенью. Его основная функция – работать с тромбоцитами крови, чтобы создать сгустки крови. Аномально низкие уровни фибриногена могут приводить к чрезмерному кровотечению и кровоизлиянию. Однако, повышенный уровень фибриногена может быть сильным предиктором инсульта и является фактором риска сердечно-сосудистых заболеваний. Согласно исследованию, уровни фибриногена могут служить точным биомаркером для сердечно-сосудистого риска даже у пациентов, которые показывают нормальный здоровый уровень холестерина.

Антитела в плазме крови

антитела в плазме кровиПлазма крови содержит антитела, тип белка, который может бороться с веществом, считающимся чужеродным по отношению к организму хозяина. Тело производит антитела, соответствующие природным антигенам, унаследованным через ДНК. Чужеродные антигены, которые иногда возникают при беременности или переливании крови, также вызывают образование антител. Подобно ключам к блокировке, антитела циркулируют в плазме крови, готовые защищаться от их сопоставимого антигена.

Природные антитела

При рождении ДНК конфигурирует все клеточные коды, которые определяют антиген-состав человека. Если, например, присутствует антиген А, то антитело, называемое анти-А, если оно вводится посредством переливания плазмы крови, будет связываться с таким антигеном, как ключ, вписывается в замок. Когда анти-А «заперт» на антиген А, клетка не может функционировать и удаляется организмом.

Типы антител естественной крови встречаются в противоположностях. Если кровь представляет собой антигенную группу А, тогда циркулирующее плазменное антитело будет анти-В. Если кровь является антигенной группой B, то циркулирующее плазменное антитело будет анти-A. Если кровь является антигенной группой О, циркулирующие антитела будут как анти-А, так и анти-В. Если кровь представляет собой антигенную группу АВ, то в плазме пациента не будет присутствовать анти-А или анти-В.

Стимулированные антитела

Беременная женщина может формировать антитела в своей плазме, когда ее плод развивает свои генетически унаследованные антигены. Если эти антигены являются «чужими» для матери, она будет формировать антитела против них.

Наиболее распространенным антителом является анти-D или анти-резус-фактор. Матери, которые являются резус-отрицательными, не обладают антигеном D, и поэтому, когда у ребенка это происходит, ее организм будет продуцировать антитело против D.

Резус-отрицательные должны получить Rh Immune Globulin на 28 неделе беременности, чтобы предотвратить образование анти-D-антитела. Если у ребенка рождается Rh или D положительный, она должна получить еще одну дозу Rh Immune Globulin. Анти-D-антитело является единственным известным предотвратимым антителом во время беременности.

Другие стимулированные антитела, которые циркулируют в плазме, поступают от приема или воздействия антигенов крови. Переливание крови из общей популяции подвергает реципиента воздействию чужеродных антигенов крови.

Другие антитела

Не все плазменные антитела связаны с анализом крови и набором крови. Антитела также образуются в таких веществах, как вирусы и аллергены. Антитела искусственно создаются у людей, которые проходят вакцинацию. Некоторые антитела, обнаруженные в лабораторных анализах крови, могут показать, что пациент был инфицирован ВИЧ, например.

Электролиты в плазме крови

Кровь состоит из клеточного материала – красных кровяных клеток, лейкоцитов и тромбоцитов, а также неклеточного материала. Когда клетки удаляются из крови, жидкое вещество, называемое плазмой, остается. Плазма – это вода, в которую растворяется широкий спектр материалов, включая белки, сахара и жиры. Эти вещества играют разнообразную роль в организме, от защиты организма от инфекции до кормления клеток.

Минералы и электролиты

Минералы являются жизненно важным компонентом плазмы крови. Они существуют, прежде всего, как соли, которые растворяются в плазме и в жидкости внутри клеток. Эти минералы известны как электролиты. Минералы являются неорганическими соединениями, а это означает, что они не содержат углерода. Когда они растворяются в воде, они разрываются на ионы. Положительно заряженные ионы называются катионами; они включают натрий и калий. Отрицательно заряженные ионы называются анионами. Некоторыми примерами анионов являются хлорид и бикарбонат. Из-за их зарядов электролиты могут нести электрический ток; некоторые электролиты играют определенную роль в выработке электрических зарядов в клетках, что вызывает, например, возбуждение нервов.

Место нахождения электролитов

Электролиты находятся как во внеклеточной жидкости тела, крови, так и внутриклеточном отделении тела, жидкости внутри клеток. Типы электролитов и их количества различаются во внеклеточных и внутриклеточных компонентах тела. Внутри клетки наиболее распространенным электролитом является калий; в плазме крови наиболее распространенным электролитом является натрий.

Натрий

Натрий является наиболее распространенным электролитом и самым распространенным катионом в плазме крови. Хлорид, присутствующий в немного меньшем количестве, является самым распространенным анионом. Нормальное количество натрия в плазме человека составляет 136-145 ммоль на 1 л. Уровни выше или ниже этого диапазона могут быть опасными.

Натрий играет большую роль в поддержании баланса воды в крови и в тканях. Тело контролирует натрий и объем крови; датчики в определенных частях тела, такие как кровеносные сосуды и почки, сообщают почкам, следует ли увеличивать или уменьшать выделение натрия и воды.

Натрий также играет важную роль в функционировании нервных и мышечных клеток. Натрий и калий, перемещающиеся взад и вперед по мембранам клеток, генерируют заряд, который может вызвать сокращение мышечной клетки или нервной клетки для передачи сигнала.

Слишком много натрия и слишком мало натрия могут быть опасными. Слишком много натрия в крови называется гипернатриемия; его причиной чаще всего является потеря большого количества воды из организма или из-за недостаточного употребления воды. Тяжелая гипернатриемия может привести к смерти. Слишком мало натрия в организме называется гипонатриемия; это может быть вызвано употреблением слишком большого количества воды или недостаточным количеством воды. Как и гипернатриемия, гипонатриемия может быть фатальной, если ее не лечить.

Сохранение электролитов, особенно натрия, в правильном балансе в организме имеет важное значение. Очень высокое или очень низкое количество электролитов может быть фатальным. Тело способно поддерживать этот баланс разными способами; кроме того, потребление надлежащего количества жидкости и электролитов, особенно при тяжелых физических нагрузках или болезнях, может способствовать надлежащим уровням в организме и нормальному функционированию органов.

Белки крови выполняют серьезные задачи Функции белков плазмы крови

Многообразие белков крови приводит к тому, что они обладают многочисленными функциями:

  • поддерживают постоянство коллоидно-осмотического давления крови – в первую очередь, альбумины,;

  • участвуют в регуляции кислотно-основного состояния – альбумины, гемоглобин,

  • удерживают в связанном состоянии и транспортируют ионы кальция, магния, железа, меди и другие ионы, препятствуя их потере с мочой – альбумины и специфические транспортные белки,

  • связывают и транспортируют органические вещества (углеводы, липиды, гормоны, лекарства, витамины, токсины) – альбумины и другие белки,

  • определяют вязкость крови и сохраняют устойчивость эритроцитов и лейкоцитов в кровотоке, обеспечивают нормальный кровоток в капиллярах (реологические свойства крови) – белки свертывающей системы,

  • специализированные белки, участвующие в свертывании крови (фибриноген, протромбин, антигемофильный глобулин и др.),

  • обеспечивают иммунную защиту организма – иммуноглобулины, факторы системы комплемента, трансферрин и пропердин,

  • обеспечивают неспецифическую защиту организма при повреждении тканей – белки острой фазы.

Общая биохимияБиохимия азотистых веществ кровиБелки острой фазы — быстро реагирующие белки

Белки острой фазы — быстро реагирующие белки

Белки острой фазы – большая группа белков сыворотки крови (в основном α-глобулинов) с молекулярной массой от 12 кДа до 340 кДа и различными функциями, объединенных по общему признаку – быстрое изначительное увеличение концентрации при бактериальной, вирусной, паразитарной инфекции, физической или химической травме, токсической или аутоиммунной реакции, злокачественныхновообразованиях. Смысл данного увеличения заключается в повышении резистентности клеток к окислению, в ограничении повреждения тканей, в подавлении скорости размножения бактерий.

Синтез белков острой фазы осуществляется печенью, моноцитами, лимфоцитами, нейтрофилами. Их концентрация зависят от стадии заболевания и/или от масштабов повреждений. Синтез белков включается и регулируется рядом медиаторов, среди которых цитокины, анафилотоксины и глюкокортикоиды.

К белкам острой фазы относят С-реактивный белоксывороточный амилоид Агаптоглобинα2-макроглобулинцерулоплазминα1-гликопротеинα1-антитрипсинорозомукоид, компоненты комплементаС14, С9Трансферрин также относят к белкам острой фазы, но его концентрация при воспалениях снижается – его называют негативным белком острой фазы.

Увеличение концентрации белков острой фазы в крови является хорошим индикатором не только явного, но и скрытого воспаления (например, атеросклероз).

Альбумин — основной белок крови

Белок синтезируется почти исключительно в печени. Хотя по классификации его относят к простым белкам, отмечается широкая микрогетерогенность молекул альбумина, что связано с количеством и качеством агрегированных с альбумином молекул.

Значение альбумина в крови заключается:

1. В поддержании коллоидно-осмотического давления;

2. Он является богатым и быстро реализуемым резервом белка;

3. Транспортная – альбумин переносит

  • длинноцепочечные жирные кислоты – основная физиологическая функция сывороточного альбумина.

  • пигменты (билирубин),

  • катионы (например, Ca2+ и Mg2+), анионы (Cl),

  • желчные кислоты,

  • витамины,

  • гормоны (альдостерон, прогестерон, гидрокортизон),

  • органические красители,

  • лекарственные вещества (дигоксин, барбитураты, пенициллин, ацетилсалициловая кислота, сердечные гликозиды).

Изменения количества белка в крови могут иметь как абсолютный (истинный), так и относительныйхарактер. Сдвиги абсолютного характера являются следствием колебаний содержания белка в крови. В свою очередь, относительные изменения зависят от объема крови, т.е. наблюдаются при обезвоживании или гипергидратации.

Функции белков плазмы крови — Мегаобучалка

1. Белки поддерживающие коллоидно-осмотическое (онкотическое)давление и тем самым постоянный объем крови.

2. Белки определяют вязкость крови и сохраняют устойчивость эритроцитов и лейкоцитов в кровотоке.

3. Белки участвуют в регуляции кислотно-щелочного равновесия (белковая буферная система).

4. Белки выполняют транспортную функцию. Они транспортируют углеводы, липиды, гормоны, лекарства.

5. Белки удерживают в связанном состоянии и транспортируют катионы Са2+, Fe2+, Mg2+, Сu2+, препятствуют их потере с мочой.

6. Специализированные белки участвуют в свертывании крови (фибриноген, протромбин).

7. Белки выполняют защитную функцию. Иммуноглобулины участвуют в реакциях гуморального иммунитета.

8. Белки являются резервом аминокислот.

Альбумины.

На долю альбуминов приходится 55 – 60% белков плазмы крови. Молекулярная масса 70 тыс Да. Содержание альбуминов в крови – 40 – 50 г/л. Период полураспада 7 дней.

Альбумины поддерживают коллоидно-осмотическое давление и регулируют обмен жидкостей между кровью и тканями.

Снижение концентрации альбумина в сыворотке крови ниже 30 г/л сопровождается уменьшением онкотичекого давления крови и возникновением онкотического давления крови и возникновением отеков.

Функции альбуминов: транспорт неэстерифицированных жирных кислот, желчных кислот, желчных пигментов (билирубин), стероидные гормоны, ионы Са2+, многие лекарства – сульфаниламиды, пенициллин, дикумарин, аспирин.

Глобулины.

Глобулины делят на 1, 2, и -глобулины.

Фракция 1-глобулинов.

1 – гликопротеин кислый – орозомукоид, М.М. 40 кД, концентрация 55 – 100 мг/100 мл.

Функция – неспецифический транспорт гормонов.

Концентрация возрастает при воспалении, травле, ревматоидном артрите, некоторых опухолях.

Ретинолсвязывающий белок – транспорт витамина А. М.М. 21 кД, концентрация 3 – 6 мг/100 мл. синтезируется в гепатоцитах, [конц.] при патологии почек и печени.

1-антитрипсин – альфа1-глобулин, синтезируется в печени, М.М. 54 кД, ингибитор протеолитических ферментов.



Концентрация 200 – 400 мг/ 100 мл = 2 – 4 г/л.

Врожденная недостаточность сопровождается легочной эмфиземой, циррозом печени у детей.

Альфа — 1 – антитрипсин инактивирует элластазу (элластаза – это фермент расщепляющий эластин, этого белка много в легочной ткани). Когда 1-антипротеазы неактивны, повышается активность элластазы. У таких людей развивается эмфизема легких. Такое бывает в старости, у музыкантов. При генетическом дефекте такое заболевание бывает у детей.

Увеличение концентрации 1-антитрисина наблюдается при остром гепатите, циррозе печени, гематоме, беременности.

Тироксинсвязывающий белок – связывает и транспортирует гормон щитовидной железы – тироксин. М.М. 58 кД, концентрация 1 – 2 мг/100 л.

Транскортин – связывает и транспортирует кортикостероиды. М.М. 52 кД, концентрация 3 – 3,5 мг/100 мл.

1-фетоглобулин = 1-фетопротеин – белок плода. Синтезируется в печени, концентрация 8 – 9 г/л. функция – поддержание онкотического давления крови. В норме здоровых людей не содержится. Содержание увеличивается при остром гепатите, циррозе печени, гепатоме, беременности. Повышение концентрации – ранний признак рака печени.

2 — глобулины

Гаптоглобин составляет 25% от всех 2-глобулинов. Гаптоглобины синтезируются в печени, состоят из двух легких и двух тяжелых цепей. М.М. 200 – 250 кД, концентрация 1 – 3 г/л.

Разновидности Нр 1-1 (азиаты)

2-1

2-2

отличаются по набору полипептидных цепей и последовательности аминокислот.

Функция – гаптоглобин образует стабильный комплекс с гемоглобином, появляющимся в плазме крови в результате внутрисосудистого гемолиза эритроцитов. Гаптоглобин – гемоглобиновый комплекс поглощается клетками РЭС, где глобин и гем подвергаются распаду, а освободившееся железо используется для синтеза гема. Такой механизм предотвращает повреждение почек гемоглобином и потерю железа с мочой. Ингибитор протеаз, транспорт В12.

Низкий уровень гаптоглобина приводит к гемолитической анемии.

Концентрация увеличивается при воспалении, инфекции, ревматической лихорадке, метастазирующем раке.

Церулоплазмин – белок голубого цвета из-за содержания меди. М.М. 150 кД, концентрация 2 – 3 г/л, синтезируется гепатоцитами. Церулоплазмин участвует в обмене меди, регулирует уровень меди в печени, участвует в обмене витамина С, адреналина, диоксифенилаланина, серотонина, мелатонина. Уменьшение содержания цероплазмина при гепатоцеребральной дистрофии (болезнь Вильсона-Коновалова) сопровождается накоплением меди в нервной ткани и печени (врожденное нарушение). Увеличение содержания церулоплазмина специфично для меланомы и шизофрении.

2-макроглобулин – ингибитор протеаз (эндопептидаз). М.М. 725 кД, концентрация 152 – 420 мг/100мл, синтезируется в печени. Протеазы появляются в крови при гибели клеток.

Три белка: 1-антитрипсин, 2-макроглобулин и интер- -трипсиновый ингибитор называют ингибиторами протеаз или антипротеазами. Эти белки ингибируют протеазы, т.е. регулируют их активность. Антипротеазы ингибируют ферменты свертывающей системы крови, а также протеазы (трипсин, химотрипсин), поступающие в кровь после гибели и разрушения клеток.

-глобулины.

Трансферрин – связывает и транспортирует железо в различные ткани, регулирует концентрацию. М.М. 90 кД, концентрация – 2 – 3 г/л, синтезируется в печени и в макрофагальной системе. Имеет 2 активных центра, связывает 2 атома железа. Связывает и переносит Zn, Cu и витамин D.

Трансферрин предотвращает избыточное накопление Fe3+ в тканях и потерю его с мочой.

Уменьшение содержания трансферрина отмечается при гепатитах, опухолях, нефротическом синдроме. Повышение содержания связано с усиленным распадом эритроцитов.

Гемопексин – связавает гем и предотвращает его выведение почками. Комплекс гем-гемопексин улавливается из крови печенью, где железо освобождается и используется для образования гема. М.М. 57 кД, концентрация 50 – 100 мг/100мл.

Концентрация уменьшается при гемолизе, болезнях печени и почек. Концентрация увеличивается при воспалении.

Ферменты крови.

Ферменты крови делят на 3 группы:

1. Секреторные, плазмоспецифические или собственно сывороточные или собственные ферменты крови. Синтезируются где-то, чаще в печени, но поступают в кровоток и там выполняют функцию.

Относятся белки – ферменты свертывающей, антисвертывающей, кининовой, ренинангиотензиновой систем.

К этой группе относятся лецитин-холестеринацилтрансфераза (ЛХАТ), липопротеидлипаза, холинэстераза.

Диагностическое значение определения активности ферментов этой группы невелико. Снижение их активности указывает на повреждение продуцирующего эти ферменты органа – чаще всего печени.

2. Экскреторные

К этой группе относятся ферменты поджелудочной железы, желудка. Относятся трипсин, химотрипсин.

3. Тканевые (клеточные), индикаторные ферменты. Попадают в кровь из тканей, где они выполняют определенные внутриклеточные функции.

Активность этих ферментов определяют с целью выявления поврежденного органа. При поражении тех или иных тканей ферменты из клеток «вымываются» в кровь и их активность в сыворотке резко возрастает, что является индикатором степени и глубины повреждения тканей.

Начальные стадии повреждений, на которых целостность клеток еще не нарушена, но проницаемость клеточных мембран уже увеличелась, сопровождается выходом в кровь растворимых ферментов цитозоля (альдолаза, аланинаминотрансфераза, лактатдегидрогеназа, гексокиназа, пируваткиназа).

При более глубоких повреждениях, когда происходит разрушение клеток вплоть до некроза, в плазме крови появляются ферменты, связанные с клеточными органеллами – митохондриями, лизосомами.

Активность ферментов определяют с целью энзимодиагностики.

Ферментные тесты обладают определенной информативностью:

1. Показывают наличие патологии.

2. Показывают на локализацию процесса.

3. Определяют глубину повреждения клеток.

4. Позволяют решить вопрос о лечении, его эффективности. Необходимо сочетание с другими методами диагностики.

В клинике с целью диагностики определяют:

1. Креатинкиназу (фосфокреатинкиназу). Отностися к фосфотрансферазам, катализирует реакцию переноса остатка фосфорной кислоты на креатин с образованием креатин-фосфата. Играет важную роль в поддержании соотношения АТФ/АДФ в клетке. Специфична для мышечной ткани. Среди различных типов мышц активность креатинкиназы распределяется следующим образом: поперечнополосатые мышцы > сердечные мышцы > мышцы беременной матки > мышцы матки > гладкие мышцы.

Креатинкиназа представлена несколькими изоферментами, обладающими тканевой специфичностью. Молекула фермента состоит из 2 типов полипептидных цепей: М и В. Образует 3 изофермента: I тип (ВВ) – мозг, II тип (МВ) – сердце, III тип (ММ) – скелетная мускулатура.

У больных инфарктом миокарда активность креатинкиназы в сыворотке возрастает уже через 3-4 часа после начала заболевания, максимальная активность фермента отмечается к концу первых суток, в 5 0 20 раз (возможно до 100 раз).

У больных прогрессирующей мышечной дистрофией активность креатинкиназы возрастает в 50 раз, в мышцах появляются МВ и ВВ изоформы, отсутствующие у здоровых людей.

Различные заболевания центральной нервной системы – шизофрения, маниакально-депрессивный синдром, синдромы, вызываемые психотропными средствами сопровождаются возрастанием в крови активности креатинкиназы.

Повышение активности кратковременное, что обусловлено высокой активностью фермента и вызывает выработку антител и выведение из организма.

Для диагностики повреждения миокарда определяют активность аспартатаминотрансферазы. Активность фермента повышается у 98% больных. Повышение активности коррелирует с величиной очага поражения: повышение в 25-30 раз – крупный инфаркт, в 50-60 раз – трансмуральный инфаркт. Повышение активности фермента отмечается через 5 – 6 часов, максимум – через 15 – 20 часов.

Для диагностики инфаркта определяют изоверменты лактатдегидрогеназы: ЛДГ1 и ЛДГ2. Активность ферментов повышается через 1 – 2 суток после возникновения инфаркта. Повышение в 25 – 30 раз. Активность снижается в период исчезновения ресорбционекротического синдрома.

Повышение активности фермента позволяет дифференцировать стенокардию и инфаркт. При стенокардии активность фермента повышается редко и незначительно. Повторный инфаркт приводит к повышению активности фермента. При первичном инфаркте выбрасываются белки, на которые образуются АТ, которые могут стать причиной болевых синдромов (синдром Дреслера) и этим отличаются от вторичного инфаркта. При синдроме Дреслера активность фермента не повышена.

С целью диагностики заболеваний печени определяют активность аланинаминотрансферазы. Активность повышается за 1 – 1,5 недели до появления желтухи. Выявляют гепатит любой этимологии. Через 1 – 3 дня после появления желтухи активность АлТ увеличивается в 10 – 20 раз, четкой корреляции между повышением активности и величиной очага поражения нет. Нормализация АлТ – признак клинического выздоровления.

При заболеваниях печени незначительно повышается активность АсТ, возвращение к норме идет постепенно, но активность фермента может расти и на фоне лечения, т.е. в кровоток может проникать митохондриальный фермент, т.е. лечение неэффективно. Активность фермента характеризует выраженность цитолитического синдрома, т.е. повышение проницаемости мембран гепатоцитов.

Щелочная фосфотаза – катализирует гидролиз сложноэфирных связей в моноэфирах фосфорной кислоты и органических соединений. Активность фермента повышается у больных с механической желтухой, циррозе. Щелочная фосфотаза характеризует развитие внутрипеченочного холестаза – нарушение оттока по печеночным капиллярам.

Активность щелочной фосфатазы повышается у больных саркоидозом, туберкулезом, амилоидозом, лимфогрануломатозом.

При заболевании печени определяют изоферменты лактатдегидрогеназы, о заболевании судят по ЛДГ5, где есть связь между активностью фермента и величиной очага поражения, активность повышается одновременно с появлением желтухи.

Альдолаза – первый определенный в клинике фермент. Фермент гликолиза, активируется при злокачесвенных новообразованиях в печени.

Сорбитолдегидрогеназа – органоспецифичен для печени. В норме в крови не определяется, наличие свидетельствует о патологии.

Алкагольдегидрогеназа – окисляет этиловый спирт. С помощью этого фермента пытались дифференцировать алкогольный гепатит от других видов гепатита. Уровень АДГ не соответствует выраженности процесса.

-глутамилтрансфераза – переносит остаток глу. Активность растет при алкогольном гепатите в 20 – 30 раз.

Белки острой фазы

Под этим термином объединяют белки содержание, которых увеличивается или белки обнаруживаются при воспалительных процессах.

К белкам острой фазы относятся: С-реактивный белок, 1-гликопротеин кислый, 1-антитрипсин, 2-макроглобулин, церулоплазмин, гаптоглобин.

Для белков острой фазы характерны 2 общих признака:

1. Белки острой фазы являются гликопротеидами.

2. Синтезируются в печени.

Важное клиническое значение имеет определение содержания в сыворотке крови – С-реактивного белка. Название С-реактивный белок получил за способность вступать в реакцию преципитации с С-полисахаридом пневмококов.

С-реактивный белок синтезируется в печени, М.М.138 кД, 6 субъединиц по 23 кД. С-реактивный белок способствует фагоцитозу, активирует иммунные реакции, связывание комплемента.

Содержание белков острой фазы изменяется при остром течении заболевания, а также при обострении хронических процессов и понижается при выздоровлении. Белки острой фазы естественные ингибиторы иммунной системы, не дают развиться иммунопатологической реакции.

Белки-ферменты плазмы крови.

По функции белки-ферменты плазмы крови делят на:

а) Собственно ферменты плазмы— выполняют специфичные метаболические функции в плазме. К собственно ферментам плазмы относятся такие протеолитические системы, как система комплемента, система регуляции сосудистого тонуса и некоторые другие.

б) Ферменты, поступающие в плазмув результате повреждения того или иного органа, той или иной ткани в результате разрушения клеток. Обычно не выполняют в плазме метаболическую функцию. Однако для медицины представляет интерес определение активности некоторых из них в плазме крови в диагностических целях (трансаминазы, лактатдегидрогеназа, креатинфосфокиназа и др.)

Органические небелковые соединения плазмы

Делятся на две группы:

I группа — азотсодержащие небелковые компоненты

В состав небелкового азота крови входит азот промежуточных и конечных продуктов обмена простых и сложных белков. Раньше небелковый азот называли «остаточный азот» (остается после осаждения белков):

— азот мочевины (50%)

— азот аминокислот (25%)

— низкомолекулярные пептиды

— креатин

— креатинин

— билирубин

— индикан

— некоторые другие азотсодержащие вещества

При некоторых заболеваниях почек, а также при патологии, сопровождающейся массивным разрушением белков (например, тяжелые ожоги), может повышаться небелковый азот крови, т.е наблюдается азотемия. Однако наиболее часто нарушается не общее содержание небелкового азота в крови, а соотношение между отдельными компонентами небелкового азота. Поэтому сейчас в плазме определяют азот отдельных компонентов.

В понятие » остаточный азот» включают и низкомолекулярные пептиды. Среди низкомолекулярных пептидов есть много пептидов, обладающих высокой биологической активностью (например, гормоны пептидной природы).

II группа — безазотистые органические вещества

К безазотистым (не содержат азот) органическим веществам плазмы крови относятся:

1) Углеводы, липиды и продукты их метаболизма (глюкоза, пируват, лактат, кетоновые тела, жирные кислоты, холестерин и его эфиры и др.).

Неорганические компоненты плазмы

В крови содержатся следующие электролиты:

неорганические катионы: Na+,K+,Ca++,Mg++.

неорганические анионы: Cl,HCO3,PO4,HPO4,H2PO4

органические анионы

Функции электролитов:

обеспечивают существование осмотического давления крови

входят в состав буферных систем крови.

электролиты крови необходимы для поддержания постоянного ионного состава тканевой жидкости и клеток.

Кислотно-основной баланс

Концентрация ионов Н+в плазме и в межклеточном пространстве составляет около 40 нМ. Это соответствуетвеличине рН 7,40. рН внутренней среды организма должен поддерживаться постоянным, так как существенные изменения концентрации прогонов не совместимы с жизнью(рис 2).

Постоянство величины рН поддерживается буферными системамиплазмы (схемаВ), которые могут компенсировать кратковременные нарушения кислотно-основного баланса. Длительное рН-равновесие поддерживается с помощью продукции и удаления протонов. При нарушениях в буферных системах и при несоблюдении кислотно-основного баланса, например в результате заболевания почек или сбоев в периодичности дыхания из-загипо- илигипервентиляции, величина рН плазмы выходит за допустимые пределы. Уменьшение величины рН 7,40 более, чем на 0,03 единицы, называетсяацидозом, а повышение —алкалозом

Происхождение протонов.Существуют два источника протонов — свободные кислоты пищи и серосодержащие аминокислоты белков, полученные с пищейкислоты, например, лимонная, аскорбиновая и фосфорная, отдают протоны в кишечном тракте (при щелочном рН). В обеспечение баланса протонов наибольший вклад вносят образующиеся при расщеплении белков аминокислотыметиониницистеин. В печени атомы серы этих аминокислот окисляются до серной кислоты, которая диссоциирует на сульфат-ион и протоны.

При анаэробном гликолизе в мышцах и эритроцитах глюкоза превращается в молочную кислоту, диссоциация которой приводит к образованию лактата и протонов. Образование кетоновых тел — ацетоацетата и- гидроксибутирата — в печени также приводит к освобождению протонов, избыток кетоновых тел ведет к перегрузке буферной системы плазмы и снижению рН (метаболический ацидоз; молочная кислота →лактацидоз, кетоновые тела →кетоацидоз). В нормальных условиях эти кислоты обычно метаболизируют до СО2и Н2О и не влияют на баланс протонов.

Удаление протонов.В почках протоны попадают в мочу за счет активного обмена на Na+-ионы. При этом в моче протоны забуфериваются, взаимодействуя с NH3и фосфатом

1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.

Содержание

Белок общий в плазме — 65 — 85гр/л

Подразделяются на:

  • альбумины 40-50гр/л

  • глобулины 20-30гр/л

  • Фибриноген 2-4гр/л

При электрофорезе на бумаге удается получить несколько белковых фракций из плазмы крови

  • альбумины 54-58%

  • 1глобулины — 6-7%, 2глобулины 8-9%, глобулины 13-14%, глобулины 11-12%

Функции белков.

  • транспортная. Соединяясь с рядом веществ (холистерин, билирубин и др.), а так же с рядом лекарственных веществ (пинициллин) они (белки) переносят их в ткани

  • поддержание рН

  • резерв аминокислот

  • защитная. Принимают активное участие в свертывании крови. Фибриноген — основной компонент системы свертывания крови. Важная роль в процессах иммунитета.

  • поддержание уровня катионов

  • поддержание осмотического давления (0,02 атм плазмы крови). Являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла

Характеристика некоторых белков

Сывороточный альбумин.

Состоит из 1-й полипептидной цепи, содержащей около 585 аминокислот, имеет 17 дисульфидных мостиков. Выделяют 3 домена. Структуры доменов сходны. Молекула представляет собой эллипсоид размером 3 на 15 нм. Это типичный простой белок. Концентрация в плазме чуть выше 50 гр/л.

  • Основная функция — участие в осмотической регуляции. В кровяном русле находится только 40% альбуминов, остальная часть входит в состав внеклеточной тканевой жидкости. Около 5% альбумина за 1 час покидает русло крови и возвращается с лимфой через грудной лимфатический проток.

  • Транспортная. Заключается в переносе свободных жирных кислот, перенос бирирубина, перенос перидоксаля, глютатиона, Са, Zn. Кроме того альбумины переносят часть стероидов, участвуют они в транспорте многих лекарственных веществ, (например сульфаниламидных препоратов, пиницилина, аспирина и др.)

  • Резерв белков в организме

Период полураспада примерно 7 суток.

Синтезируются в печени 13-18 гр/сут.

Фракция альбуминов при электрофорезе делится на 2

  • Альбумины А

  • Альбумины Б

Возможна анальбуминемия — отсутствие альбуминов в плазме крови. При этой патологии нарушается транспорт липидов, повышается уровень холистерола, ЛП и фосфоглицеридов.

Если концентрация альбуминов снижается ниже 30гр/л, то обычно развивается отеки.

Причина изменения содержания.

Повышение показателя имеет место при дегидра­тации, шоке, гемоконцентрации, внутривенном введении больших количеств концентрированных «растворов» альбумина.

Снижение показателя имеет место при недоеда­нии, симндроме малабсорбции, острой и хрони­ческой печеночной недостаточности, опухолях, лейкозах.

1глобулин и 2глобулины.

Ингибиторы протеиназ. 1антитрипсин, 2макроглобулин, интер--трипсиновый ингибитор. Они выполняют роль ингибиторов ферментов свертывания крови, разрушают протеиназы, поступающие в кровь при повреждении клеток. Ткань легких очень чувствительна к протеиназам.

У взрослых людей с недостаточностью 1антитрипсином обычно развивается эмфизема легких.

Церулоплазмин.

Относится к фракции 2глобулинов. Медьсодержащий гликопротеин плазмы, обладающий оксидазной активностью. При недостатке возникает болезнь Коновалова-Вильсона. Характеризуется накоплением меди в печени и головном мозге, в результате развивается поражение печени и достаточно выраженные неврологические симптомы. Гаптоглобины.

Составляют 25% всех 2глобулинов. Это белки связывающие гемоглобин, которые появляются в крови в результате сосудистого гемолиза. Такое связывание предотвращает потерю из организма железа с одной стороны, а с другой защищает почки от повреждения гемоглобином. Далее этот комплекс (гаптоглобин связавший гемоглобин) поглощается клетками ретикулоэндотелиальной системы. Низкий уровень этих белков наблюдается у больных с гемолитической анемией.

Для ряда белков -глобулиновой фракции функции неизвестны. Это такие как:

Глобулины.

Так же состоят из различных белков.

Трансферин.

Обеспечивает связывание и перенос железа. Он связывает 2 атома железа на молекулу и предотвращает потерю железа из организма. Трансферин, насыщен железом примерно на 1/3 в норме. Его концентрация повышается при недостатке железа.

Гемопексин.

Связывает свободный гем, предотвращая выделения с мочой и потеря железа. Комплекс гем-гемопексин улавливается печенью, где железо высвобождается для последующего использования. (Синтезируется в печени. Каждая молекула гемопексина связывает одну молекулу гема.)

С-реактивный белок.

Острофазный белок. Его определение используется в качестве показателя остроты патологических процессов наиболее часто при ревматизме.

Значительная часть белков фракций и глобулинов являются гликопротеидами и липопротеидами.

Синтез и распад гликопротеинов.

Гликопротеины синтезируются в большинстве своем в печени. Их гетероолигосахаридный компонент содержит галактозу, моннозу, фукозу, рамнозу, аминосахара, сиаловые кислоты. У гликопротеинов концевым свободным углеводным остатком чаще всего является сиаловая кислота. Потеря данным белком сиаловой кислоты приводит к поглощению его гепатоцитами и последующим разрушению. Оказывается в мембранах гепатоцитах имеются рецепторы, которые связывают D-сиало-гликопротеины (гликопротеины лишившиеся сиаловой кислоты). Например концентрация D-виало-гликопротеинов у больных циррозом печени увеличивается в 3-4 раза.

-Глобулины.

Это белки плазмы, входящие в группу иммуноглобулинов. Они относятся к белкам, выполняющим защитную функцию. Иммуноглобулины вырабатываются в ответ на попадание во внутреннюю среду организма чужеродных веществ — антигены. Антитела способны связывать антигены и тем самым устранять чужеродные вещества. Иммуноглобулины высоко специфичны.

Все иммуноглобулины — белки с четвертичной структурой. Все иммуноглобулины содержат тяжелые Н-цепи и легкие L-цепи. По 2.

Эти цепи соединены между собой дисульфидными мостиками. Некоторые из иммуноглобулинов являются олигомерами, т.е. состоят из нескольких 4-х цепочечных структур.

В зависимости от состава Н и L цепей иммуноглобулины делятся на классы:

IgG

IgA основные

IgM IgDIgE минорные

Изучение структуры антител показало, что у всех легких и тяжелых цепей можно выделить вариабельные (В) и постоянные (С).

Вариабельные участи расположены на n-концах L и H цепей в области В участка, расположены антигенсвязывающие центры, последние специфичны для каждого индивидуального антитела и позволяет узнавать за счет комплементарности свой антиген. Именно В участки обеспечивают специфичность.

С-участки отвечают за другие функции (например работают при связывании комплемента — еще одна защитная система, обеспечивающая перенос антител через плацентарный барьер).

Углеводные гетероолигосахаридные группировки С-участков определяют скорость разрушения антител.

Причина изменения содержания.

Повышение показателя имеет место при болезнях печени, инфекционнонм гепатите, билиарном цир­розе, гемохроматозе, системной красной волчанке, плазмоклеточной миеломе, лимфопро лиферативных заболеваниях, саркоидозе, острых и хронических инфекциях, особенно при лимфогранулеме, обусловленной венерическим заболе­ванием, тифе, лейшманиозе, шистоматозе, малярии

Снижение показателя имеет место при недоста­точном питании, врожденной агаммаглобулине мии, лимфолейкозе.

Фибриноген плазмы.

Норма 2-6 г/л СИ (0,2-0,6 г% )

Повышение показателя имеет место при гломеру лонефрите, нефрозе (иногда), инфекциях

Снижение показателя имеет место при диссеми-нированном внутрисосудистом свертывании крови (случаи беременности с отслойкой плацен­ты, эмболии околоплодными водами, стремитель­ные роды), при менингококковом менингите, раке простаты с метастазами, лейкозах, при острой и хронической печеночной недостаточности, врож денной фибрино генопении

Изменение белков при патологии.

Гиперпротеинемии. Увеличенное содержание белков плазмы крови. Возникают при больших потерях воды вследствие ожогов, диарея у детей, рвота при непроходимости верхних отделов кишечника. Резкое увеличение -глобулинов при миеломной болезни (интенсивно образуются миеломные белки). Содержание белка может достигать 150-160 гр/л, т.е. увеличиваться в 2 раза по сравнению с нормой.

Гипопротеинемия. Снижения содержания общего белка в плазме крови. Развивается за счет снижения содержания альбуминов. Общий белок может снижаться до 3-4- гр/л. Причины. Голодание, тяжелое поражение печени, нефрозы, увеличение проницаемости стенок капилляров.

Диспротеинемии. Нарушение % соотношения отдельных фракций. Часто оно характерно для тех или иных заболеваний.

Белки острой фазы”.

Организм наш на тканевые повреждения, инфекцию и др. воздействия отвечает комплексом направленных реакций, обозначаемых как “острофазный ответ”.

Внешнее проявление этого ответа: лихорадка, лейкоцитоз, ускоренная СОЭ. В организме происходят более глубокие изменения, в том числе и изменение экспрессии генов в клетках разных тканей, которое проявляется через изменение содержания белков в празме крови. В плазме при разных воздействиях нарастает концентрация так называемых — острофазных белков: С-реактивный белок его активность может увеличиваться в 1000-2000 раз, сывороточный амилоид — в 100 раз, 2макроглобулин — в 300 раз, кислый 1-гилкопротеин в 15 раз, острофазный 1глобулин — в 10-16 раз, 1антитрипсин, церулоплазмин, фибриноген — в 2-3 раза.

Многие члены этого семейства играют важную роль в защите организма от чужеродных инвазий, от патогенных агентов и тканевых повреждений, действие одних белков ограничивается областью тканевых повреждений, другие участвуют в очистке организма от чужеродных агентов, третьи инициируют тканевую рапорацию. Отличительной особенностью является то, что многие из острофазных белков являются ингибиторами протеиназ, т.е. эти белки нейтрализуют протеиназы, поступающие во внеклеточную среду или кровь при гибели клеток в результате воздействия повреждения или инфекций.

Ингибиторами протеиназ являются:

  1. Острофазный 1глобулин (цистиинпротеиназный ингибитор).

  2. 1антитрипсин — ингибитор сериновых протеиназ

  3. 2макроглобулин — ингибитор широкого спектра действия.

Некоторые из белков являются модуляторами воспалительных и иммунных ответов (С-реактивный белок, кислый 1гликопротеин, сывороточный амилоидный протеин).

Синтез и выделение острофазных белков контролируется целой системой тканевых гормонов типа интерлейкинов, так же интерфероном, глюкокортикоидами и др. факторами, регулирующими экспрессию генов острофазных белков. Таким образом острофазные белки наделены многими гомеостатическими функциями и являются одним из главных факторов неспецифической системы защиты организма.

Причины появления в моче.

Белок. В нормальной моче имеется незначитель­ное количество белка, которое не обнаруживается качественными пробами, поэтому считается, что белка в моче нет.При ряде заболеваний в моче появляется белок протеинурия.

1. Внепочечные протеинурии наблюдаются при циститах, пиелитах, про­статитах, уретритах и т. д. Количество белка, как правило, не превышает 1%.

  1. Почечные протеинурии при функциональных, на­рушениях неорганического поражения паренхи­мы, повышена проницаемость почечного фильтра. Это может быть при охлаждении, физическом и психическом напряжении.

Ортастатическая протеи­нурия развивается чаще у детей дошкольного и школьного возраста.

Органические протеинуриипоражена паренхима и увеличена проницаемость клубочковых капилляров, наблюдается при острых и хронических гломерулонефритах, нефрозах, инфек­ционных и токсических состояниях, застойных явле­ниях в почках.

Качественный состав белков мочи (электрофорез) не показал специфических изменений при различных видах протеинурии, за исключением протеинурии при парапротеинемиях, в особенности при миеломной болезни, болезни Вальденстрема.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *