Абсолютное число это – Определение абсолютное значение общее значение и понятие. Что это такое абсолютное значение

Содержание

Абсолютная величина — Википедия

Материал из Википедии — свободной энциклопедии

График вещественной функции Модуль |z|{\displaystyle |z|} и другие характеристики комплексного числа z{\displaystyle z}

Абсолю́тная величина́, или мо́дуль числа x{\displaystyle x} (в математике) — неотрицательное число, определение которого зависит от типа числа x{\displaystyle x}. Обозначается: |x|{\displaystyle |x|}.

В случае вещественного x{\displaystyle x} абсолютная величина есть непрерывная кусочно-линейная функция, определённая следующим образом:

 |x|={  x,x⩾0−x, x<0{\displaystyle \ |x|={\begin{cases}\ \ x,&x\geqslant 0\\-x,&\ x<0\end{cases}}}

Обобщением этого понятия является модуль комплексного числа z=x+iy,{\displaystyle z=x+iy,} также иногда называемый абсолютной величиной

[1]. Он определяется по формуле:

|z|=|x+iy|=x2+y2{\displaystyle |z|=|x+iy|={\sqrt {x^{2}+y^{2}}}}

С геометрической точки зрения, модуль вещественного или комплексного числа есть расстояние между числом и началом координат. В математике широко используется тот факт, что геометрически величина |x1−x2|{\displaystyle |x_{1}-x_{2}|} означает расстояние между точками x1{\displaystyle x_{1}} и x2{\displaystyle x_{2}} и, таким образом, может быть использована как мера близости одной (вещественной или комплексной) величины к другой.

Вещественные числа[править | править код]

  • Область определения: (−∞;+∞){\displaystyle (-\infty ;+\infty )}.
  • Область значений: [0;+∞){\displaystyle [0;+\infty )}.
  • Функция чётная.
  • Функция дифференцируема всюду, кроме нуля. В точке x=0{\displaystyle x=0} функция претерпевает излом.

Комплексные числа[править | править код]

Для любых вещественных чисел a,b{\displaystyle a,b} имеют место следующие соотношения:

  •  |x|=x2=x⋅sgn⁡x=max{x,−x}{\displaystyle \ |x|={\sqrt {x^{2}}}=x\cdot \operatorname {sgn} x={\rm {max}}\,\{x,\,-x\}} (см. Функция sgn(x)).
  • a⩽|a|{\displaystyle a\leqslant |a|}
  • −|a|⩽a{\displaystyle -|a|\leqslant a}.
  • Квадрат модуля числа равен квадрату этого числа: |a|2=a2{\displaystyle |a|^{2}=a^{2}}

Как для вещественных, так и для комплексных a,b{\displaystyle a,b} имеют место соотношения:

Считают, что термин предложил использовать Котс, ученик Ньютона. Лейбниц тоже использовал эту функцию, которую называл модулем и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году Вейерштрассом. Для комплексных чисел это понятие ввели Коши и Арган в начале XIX века.

Поскольку эта функция вычисляется достаточно просто (только сравнениями и присваиванием), то обычно она входит в стандартный список функций во все языки программирования. Например, в Pascal есть функция abs(x), а в C fabs(x) для вещественного типа. В программе Wolfram Mathematica Abs[x].

Понятие абсолютной величины можно ввести в произвольном упорядоченном кольце или упорядоченном поле, и свойства её будут аналогичны приведенным выше.

Обобщением понятия модуля можно считать норму элемента многомерного векторного пространства, обозначаемую ‖x‖{\displaystyle \|x\|}. Норма вектора в евклидовом пространстве иногда тоже называется модулем. По аналогии с модулем разности чисел, норма разности двух векторов является мерой близости между ними. В отличие от модуля числа, норма вектора может определяться различными способами, однако в случае одномерного пространства норма вектора пропорциональна (часто и равна) модулю его единственной координаты.

Определение абсолютное значение общее значение и понятие. Что это такое абсолютное значение

Понятие абсолютного значения используется в области математики для обозначения значения, число которого выходит за его знак. Это означает, что абсолютное значение, также известное как модуль, является числовой величиной фигуры независимо от того, является ли ее знак положительным или отрицательным.

Возьмите случай абсолютного значения 5 . Это абсолютное значение как +5 (5 положительных) и -5 (5 отрицательных). Короче говоря, абсолютное значение одинаково для положительного и отрицательного числа: в данном случае

5 . Следует отметить, что абсолютное значение записывается между двумя параллельными вертикальными полосами; следовательно, правильное обозначение | 5 |,

Определение понятия указывает, что абсолютное значение всегда равно или больше 0 и никогда не бывает отрицательным . Из вышесказанного можно добавить, что абсолютное значение противоположных чисел одинаково; 8 и -8, таким образом, имеют одинаковое абсолютное значение: | 8 |,

Вы также можете понимать абсолютное значение как расстояние между числом и 0 . Число 563 и число -563 находятся на числовой линии на одинаковом расстоянии от 0 . Таким образом, это абсолютная величина обоих: | 563 |,

Расстояние между двумя действительными числами

, с другой стороны, является абсолютной величиной их разности. Например, между 8 и 5 существует расстояние 3 . Эта разница имеет абсолютное значение | 3 |,

Понятие абсолютной стоимости присутствует в нескольких предметах математики, и вектор является одним из них; точнее, именно в векторной норме мы сталкиваемся с аналогичным определением. Однако прежде чем продолжить, необходимо определить евклидово пространство, поскольку эти понятия сопряжены в этой области.

Под евклидовым пространством мы понимаем некое геометрическое пространство, в котором выполняются аксиомы Евклида . Аксиома — это суждение, чья ясность такова, что не требует подтверждения; в частности, в области математики он называется так фундаментальными и недоказуемыми принципами, на которых строятся теории

.

Евклид, с другой стороны, родился в Греции примерно в 325 году. C., а его преданность числам сделала его достойным звания «Отец геометрии». Его самая важная работа представляет собой сборник из тринадцати книг, сгруппированных под названием « Элементы », в котором представлены вышеупомянутые аксиомы (также известные как постулаты Евклида ), и мы кратко рассмотрим ниже:

1) если мы возьмем любые две точки, их можно соединить с помощью линии;

2) можно непрерывно расширять все сегменты независимо от направления;

3) Окружности могут исходить из любой точки, которая будет считаться ее центром, а ее радиус может принимать любое значение;

4) любая пара прямых углов конгруэнтна;

5) Можно провести одну прямую параллельно другой из точки за пределами последней.

Обнажив основы евклидовых пространств, можно сказать, что векторы в них могут быть представлены в виде отрезков, ориентированных между любыми двумя точками. Если мы возьмем вектор, мы можем определить его

норму как расстояние между двумя точками, которые служат пределом; настолько, что в евклидовом пространстве эта норма соответствует модулю, то есть длине указанного вектора.

Как и абсолютное значение, модуль вектора всегда является положительным числом или нулем, поскольку он представляет длину, расстояние. В этом случае, как и во многих других, ассоциирование этой величины со знаком может вызвать ненужные осложнения.

В обл

Абсолютная величина — это… Что такое Абсолютная величина?

График вещественной функции Модуль и другие характеристики комплексного числа

Абсолю́тная величина́ или мо́дуль числа — неотрицательное число, определение которого зависит от типа числа . Обозначается: .

В случае вещественного  абсолютная величина есть непрерывная кусочно-линейная функция, определённая следующим образом:

Обобщением этого понятия является модуль комплексного числа , также иногда называемый абсолютной величиной[1]. Он определяется по формуле:

Основные свойства

С геометрической точки зрения, модуль вещественного или комплексного числа есть расстояние между числом и началом координат. В математике широко используется тот факт, что геометрически величина означает расстояние между точками и и, таким образом, может быть использована как мера близости одной (вещественной или комплексной) величины к другой.

Вещественные числа

Комплексные числа

Алгебраические свойства

Для любых имеют место следующие соотношения:

Как для вещественных, так и для комплексных имеют место соотношения:

История

Считают, что термин предложил использовать Котс, ученик Ньютона. Лейбниц тоже использовал эту функцию, которую называл

модулем и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году Вейерштрассом. Для комплексных чисел это понятие ввели Коши и Арган в начале XIX века.

В языках программирования

Поскольку эта функция вычисляется достаточно просто (только сравнениями и присваиванием), то обычно она входит в стандартный список функций во все языки программирования. Например, в Pascal есть функция abs(x), а в C fabs(x) для вещественного типа.

Обобщение

Обобщением понятия модуля можно считать норму элемента многомерного векторного пространства, обозначаемую . Норма вектора в евклидовом пространстве иногда тоже называется модулем. По аналогии с модулем разности чисел, норма разности двух векторов является мерой близости между ними. В отличие от модуля числа, норма вектора может определяться различными способами, однако в случае одномерного пространства норма вектора пропорциональна (часто и равна) модулю его единственной координаты.

См. также

Примечания

Абсолютное значение — это… Что такое Абсолютное значение?

1) Нормирование — от глагола «Нормировать» в первом значении : НОРМИРОВАТЬ, нормирую, нормируешь, сов. и несов., что. Регулировать что-н., установить (устанавливать) законные пределы чему-н., ввести (вводить) в норму. Нормировать зарплату. Нормировать работу. (Толковаый словарь русского языка под редакцией Ушакова.)

2) Норми́рование(мат.) — отображение элементов поля F в некоторое упорядоченное поле P  x→|x|, обладающее следующими свойствами:

1)|x|≥0 и |x|=0 только при x=0

2)|xy| ≤ |x||y|

3)|x+y| ≤ |x|+|y|

Если вместо 3) выполняется более сильное условие:

3a)|x+y| ≤ max(|x|,|y|), то нормирование называется неархимедовым.


Значение | x | (иногда обозначаемое ~

) называется нормой элемента x. Если упорядоченное поле P является полем действительных чисел R, то нормирование часто называют абсолютным значением.

Примеры нормирований

  • Нормирование, при котором |0|=0, |x|=1 для остальных x. Такое нормирование называется тривиальным.
  • Обычная абсолютная величина в поле действительных чисел R или модуль в поле комплексных чисел C является нормированием.
  • Пусть Q — поле рациональных чисел, а p — некоторое простое число. Любое рациональное число можно представить в виде дроби x=apn/b, где a и b не кратны p. Можно определить следующее нормирование |x|p=p-n. Это нормирование является неархимедовым и называется p-адическим нормированием.

Свойства нормы

  • |1|=|-1|=1
  • | |x|-|y| |≤|x-y| (в этом случае абсолютная величина в упорядоченном поле P берётся от разности двух норм |
    x
    |-|y| элементов поля F)
  • Действительнозначное нормирование является неархимедовым тогда и только тогда, когда существует положительное число A, такое, что для любой суммы единичных элементов поля F :

3b) |1+1+…+1|≤A

Пусть данное условие выполнено. Тогда для любых элементов x и y из поля F имеем:

|(x+y)n|=|xn+…Cnixnyi+…yn|≤(n+1)A(max(|x|,|y|)n

Извлекая из обеих частей корень и переходя к пределу при n→∞ получаем условие 3a). Обратное утверждение очевидно.

Нормированное поле как метрическое пространство

Из свойств 1-3 немедленно следует, что определяя расстояние между двумя элементами действительнозначного нормированного поля F как норму разности |x-y| мы превращеем его в метрическое пространство, в случае неархимедовой нормы — в ультраметрическое пространство. Разные нормы определяют разные метрики. Если при этом они определяют одинаковую топологию в

F, то такие нормы называются зависимыми.

Пополнение

Как и для любого метрического пространства можно ввести понятие полноты и доказать, что любое нормированное поле F изоморфно вкладывается в полное нормированное поле F*, то есть существует изоморфизм i:F \rightarrow F^*. Норма в F* продолжает норму в F, то есть для каждого x из F: i:F \rightarrow F^*, причём F плотно в F* относительно этой нормы. Любое такое поле F* определено однозначно с точностью до изоморфизма, сохраняющего нормы (изометрии) и тождественного на F; оно называется пополнением поля F.

Пример. Пополнением поля рациональных чисел Q с p-адической метрикой является поле p-адических чисел Qp.

Литература

  • Ван дер Варден Б. Л. Алгебра — М: Наука. 1975.
  • Зарисский О., Самюэль П. Коммутативная алгебра т.2 — М: ИЛ. 1963.
  • Ленг С. Алгебра — М: Мир. 1967.

См. также

  • Теорема Островского
  • Аппроксимационная теорема

Wikimedia Foundation. 2010.

абсолютное значение числа — это… Что такое абсолютное значение числа?


абсолютное значение числа

 

абсолютное значение числа
модуль числа
абсолютная величина числа

[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

абсолютное значение
Величина числа без учета его знака.
Так, числа +18 и -18 имеют одно и то же абсолютное значение: 18.
[http://www.morepc.ru/dict/]

Тематики

  • информационные технологии в целом

Синонимы

  • модуль числа
  • абсолютная величина числа

Справочник технического переводчика. – Интент. 2009-2013.

  • абсолютное значение погрешности
  • абсолютное измерение

Смотреть что такое «абсолютное значение числа» в других словарях:

  • АБСОЛЮТНОЕ ЗНАЧЕНИЕ — на теле отображение тела Кв множество действительных чисел, удовлетворяющее условиям: А. з. часто обозначается вместо . А. з. наз. также нормой, мультипликативным нормированием. А. з. могут рассматриваться на любом кольце со значениями в линейно… …   Математическая энциклопедия

  • Значение (значения) — Значение: Значение  смысловое содержание слова, фразы или знака. Значение функции  результат вычисления функции. Абсолютное значение  модуль числа. Значение величины  отношение измеренной физической величины к единице… …   Википедия

  • Числа — Во многих культурах, особенно в вавилонской, индуистской и пифагорейской, число есть фундаментальный принцип, лежащий в основе мира вещей. Оно начало всех вещей и той гармонии вселенной, стоящей за их внешней связью. Число это основной принцип… …   Словарь символов

  • ГОСТ 31369-2008: Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава — Терминология ГОСТ 31369 2008: Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава оригинал документа: 2.1 высшая теплота сгорания (superior calorific value): Количество… …   Словарь-справочник терминов нормативно-технической документации

  • МОЛЕКУЛЯРНЫЙ ВЕС — есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van t Hoff)… …   Большая медицинская энциклопедия

  • Московский химический лицей № 1303 — Лицей № 1303 …   Википедия

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… …   Энциклопедия инвестора

  • ВРЕМЯ — обозначает течение, длительность и последовательность событий. Оно есть условие существования конечных вещей и существ тварного мира. Согласно христ. учению, В. как творение Божие подчинено домостроительству спасения и своими границами имеет… …   Православная энциклопедия

  • предел повторяемости — 3.7 предел повторяемости: Абсолютная разность результатов максимального и минимального значений из указанного числа измерений, выполненных в условиях повторяемости по ГОСТ Р ИСО 5725 1. Источник …   Словарь-справочник терминов нормативно-технической документации


§ 3. Абсолютная величина числа

Определение.Абсолютной величиной(илимодулем) действительного числа(обозначается) называется неотрицательное число, удовлетворяющее условиям:

Ясно, что всегда

. (3.1)

Свойства абсолютных величин:

1) ; 2); 3); 4).

Доказательство.1) Если, тов силу (3.1). Если, то. Первое свойство доказано.

2) Имеем , отсюда. Второе свойство доказано.

3) , третье свойство доказано.

Четвертое свойство доказывается так же, как свойство 3).

Замечание. Свойство 1) распространяется на любое число слагаемых, свойство 3) – на любое число сомножителей.

Отметим также, что , т.е.худовлетворяет неравенствутогда и только тогда, когда принадлежит интервалу.

Геометрический смысл модуля действительного числа состоит в том, что равен расстоянию от точкихна числовой прямой до нуля.

§ 4. Понятие числовой последовательности. Бесконечно большая и бесконечно малая последовательности, их свойства

Определение 1. Если каждому значениюn из множества натуральных чиселставится в соответствие по определенному закону некоторое действительное число, то множество занумерованных действительных чисел называетсячисловой последовательностью .

– члены последовательности,– сокращенная запись последовательности. Например,.

Определение 2. Пусть даны две последовательностии. Последовательностиназываются соответственно суммой, разностью, произведением и частным последовательностейи.

Определение 3. Последовательностьназываетсяограниченной, если множество ее членов ограничено, т.е. существует число, такое, что. Последовательностьназываетсяограниченной сверху (снизу), если существует числоМ, такое, что.

Если последовательность неограниченна, то для любого числа найдется номерnтакой, что. Ясно, что если последовательность ограничена только снизу или только сверху, то она неограниченна. Среди неограниченных последовательностей выберем бесконечно большие последовательности.

Определение 4. Последовательностьназываетсябесконечно большой, если для любогонайдется номерN, такой, чтодля всех.

Всякая бесконечно большая последовательность неограниченна, но не всякая неограниченная последовательность бесконечно большая. Примером этого может служить последовательность .

Определение 5. Последовательностьназываетсябесконечно малой, если для любогонайдется номерN, такой, чтодля всех.

Установим основные свойства бесконечно малых последовательностей.

Теорема 1. Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Доказательство. Пустьи– бесконечно малые последовательности. Возьмемпроизвольно и положим. По определению 5 длянайдутся номераи, такие, чтодля всехидля всех. Положим. Тогда для всехи по определению 5 последовательностьбесконечно малая. Теорема доказана.

Аналогично доказываются

Теорема 2. Разность двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 3. Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

ожно поручить студентам доказать теоремы 2, 3 и следствие самостоятельно).

Теорема 4. Всякая бесконечно малая последовательность ограничена.

Доказательство. Пусть– бесконечно малая последовательность. Положим. По определению 5 найдется номерN, такой, чтодля всех. Обозначим. Тогдадля всехn. Теорема доказана.

Следствие теорем 3и 4. Произведение двух (любого конечного числа) бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 5. Если все члены бесконечно малой последовательности равны одному и тому же числус, то.

Доказательство. Предположим противное, т.е. что. Возьмем. По определению 5 найдется номерN, такой, чтодля всех, т.е.для всех, а этого не может быть, так какдля всехn. Противоречие доказывает утверждение теоремы.

Теорема 6. Если– бесконечно большая последовательность, то– бесконечно малая последовательность.

Доказательство. Возьмемпроизвольно и положим. Тогда по определению 4 найдется номерN, такой, чтодля всех значений. Отсюдадля всех, т.е.– бесконечно малая последовательность по определению 5. Теорема доказана.

Теорема 7. Если– бесконечно малая последовательность и все члены этой последовательности отличны от нуля, то последовательность– бесконечно большая (доказать самостоятельно).

Абсолютная величина Википедия

График вещественной функции Модуль |z|{\displaystyle |z|} и другие характеристики комплексного числа z{\displaystyle z}

Абсолю́тная величина́, или мо́дуль числа x{\displaystyle x} (в математике) — неотрицательное число, определение которого зависит от типа числа x{\displaystyle x}. Обозначается: |x|{\displaystyle |x|}.

В случае вещественного x{\displaystyle x} абсолютная величина есть непрерывная кусочно-линейная функция, определённая следующим образом:

 |x|={  x,x⩾0−x, x<0{\displaystyle \ |x|={\begin{cases}\ \ x,&x\geqslant 0\\-x,&\ x<0\end{cases}}}

Обобщением этого понятия является модуль комплексного числа z=x+iy,{\displaystyle z=x+iy,} также иногда называемый абсолютной величиной[1]. Он определяется по формуле:

|z|=|x+iy|=x2+y2{\displaystyle |z|=|x+iy|={\sqrt {x^{2}+y^{2}}}}

Основные свойства

С геометрической точки зрения, модуль вещественного или комплексного числа есть расстояние между числом и началом координат. В математике широко используется тот факт, что геометрически величина |x1−x2|{\displaystyle |x_{1}-x_{2}|} означает расстояние между точками x1{\displaystyle x_{1}} и x2{\displaystyle x_{2}} и, таким образом, может быть использована как мера близости одной (вещественной или комплексной) величины к другой.

Вещественные числа

  • Область определения: (−∞;+∞){\displaystyle (-\infty ;+\infty )}.
  • Область значений: [0;+∞){\displaystyle [0;+\infty )}.
  • Функция чётная.
  • Функция дифференцируема всюду, кроме нуля. В точке x=0{\displaystyle x=0} функция претерпевает излом.

Комплексные числа

Алгебраические свойства

Для любых вещественных чисел a,b{\displaystyle a,b} имеют место следующие соотношения:

  •  |x|=x2=x⋅sgn⁡x=max{x,−x}{\displaystyle \ |x|={\sqrt {x^{2}}}=x\cdot \operatorname {sgn} x={\rm {max}}\,\{x,\,-x\}} (см. Функция sgn(x)).
  • a⩽|a|{\displaystyle a\leqslant |a|}
  • −|a|⩽a{\displaystyle -|a|\leqslant a}.
  • Квадрат модуля числа равен квадрату этого числа: |a|2=a2{\displaystyle |a|^{2}=a^{2}}

Как для вещественных, так и для комплексных a,b{\displaystyle a,b} имеют место соотношения:

История

Считают, что термин предложил использовать Котс, ученик Ньютона. Лейбниц тоже использовал эту функцию, которую называл модулем и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году Вейерштрассом. Для комплексных чисел это понятие ввели Коши и Арган в начале XIX века.

В языках программирования

Поскольку эта функция вычисляется достаточно просто (только сравнениями и присваиванием), то обычно она входит в стандартный список функций во все языки программирования. Например, в Pascal есть функция abs(x), а в C fabs(x) для вещественного типа. В программе Wolfram Mathematica Abs[x].

Обобщение

Понятие абсолютной величины можно ввести в произвольном упорядоченном кольце или упорядоченном поле, и свойства её будут аналогичны приведенным выше.

Обобщением понятия модуля можно считать норму элемента многомерного векторного пространства, обозначаемую ‖x‖{\displaystyle \|x\|}. Норма вектора в евклидовом пространстве иногда тоже называется модулем. По аналогии с модулем разности чисел, норма разности двух векторов является мерой близости между ними. В отличие от модуля числа, норма вектора может определяться различными способами, однако в случае одномерного пространства норма вектора пропорциональна (часто и равна) модулю его единственной координаты.

См. также

Примечания

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *